Valls Mascaró, Esteve und Ma, Shuo und Ahn, Hyemin und Lee, Dongheui (2022) Robust Human Motion Forecasting using Transformer-based Model. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022, Seiten 10674-10680. IEEE. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981877. ISBN 978-166547927-1. ISSN 2153-0858.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9981877
Kurzfassung
Comprehending human motion is a fundamental challenge for developing Human-Robot Collaborative applications. Computer vision researchers have addressed this field by only focusing on reducing error in predictions, but not taking into account the requirements to facilitate its implementation in robots. In this paper, we propose a new model based on Transformer that simultaneously deals with the real time 3D human motion forecasting in the short and long term. Our 2-Channel Transformer (2CH-TR) is able to efficiently exploit the spatio-temporal information of a shortly observed sequence (400ms) and generates a competitive accuracy against the current state-of-the-art. 2CH-TR stands out for the efficient performance of the Transformer, being lighter and faster than its competitors. In addition, our model is tested in conditions where the human motion is severely occluded, demonstrating its robustness in reconstructing and predicting 3D human motion in a highly noisy environment. Our experiment results show that the proposed 2CH-TR outperforms the ST-Transformer, which is another state-of-the-art model based on the Transformer, in terms of reconstruction and prediction under the same conditions of input prefix. Our model reduces in 8.89% the mean squared error of ST-Transformer in short-term prediction, and 2.57% in long-term prediction in Human3.6M dataset with 400ms input prefix.
elib-URL des Eintrags: | https://elib.dlr.de/194538/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Robust Human Motion Forecasting using Transformer-based Model | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 26 Dezember 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981877 | ||||||||||||||||||||
Seitenbereich: | Seiten 10674-10680 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Robotics, Collaborative, §d human motion | ||||||||||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Oktober 2022 | ||||||||||||||||||||
Veranstaltungsende: | 27 Oktober 2022 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Roboterdynamik & Simulation [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Leitungsbereich | ||||||||||||||||||||
Hinterlegt von: | Geyer, Günther | ||||||||||||||||||||
Hinterlegt am: | 30 Mär 2023 18:10 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags