Yuan, Xiangtian and Tian, Jiaojiao and Reinartz, Peter (2023) Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification. Sensors, 23 (9), p. 4179. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s23094179. ISSN 1424-8220.
PDF
- Published version
8MB |
Official URL: https://www.mdpi.com/1424-8220/23/9/4179
Abstract
Multispectral sensors are important instruments for Earth observation. In remote sensing applications, the near-infrared (NIR) band, together with the visible spectrum (RGB), provide abundant information about ground objects. However, the NIR band is typically not available on low-cost camera systems, which presents challenges for the vegetation extraction. To this end, this paper presents a conditional generative adversarial network (cGAN) method to simulate the NIR band from RGB bands of Sentinel-2 multispectral data. We adapt a robust loss function and a structural similarity index loss (SSIM) in addition to the GAN loss to improve the model performance. With 45,529 multi-seasonal test images across the globe, the simulated NIR band had a mean absolute error of 0.02378 and an SSIM of 89.98%. A rule-based landcover classification using the simulated normalized difference vegetation index (NDVI) achieved a Jaccard score of 89.50%. The evaluation metrics demonstrated the versatility of the learning-based paradigm in remote sensing applications. Our simulation approach is flexible and can be easily adapted to other spectral bands.
Item URL in elib: | https://elib.dlr.de/194247/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 22 April 2023 | ||||||||||||||||
Journal or Publication Title: | Sensors | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 23 | ||||||||||||||||
DOI: | 10.3390/s23094179 | ||||||||||||||||
Page Range: | p. 4179 | ||||||||||||||||
Editors: |
| ||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | multispectral; remote sensing; NIR; RGB; cGAN; Sentinel-2; SEN12MS; robust loss; SSIM | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||
Deposited By: | Yuan, Xiangtian | ||||||||||||||||
Deposited On: | 21 Aug 2023 09:31 | ||||||||||||||||
Last Modified: | 31 Aug 2023 16:58 |
Repository Staff Only: item control page