Yuan, Xiangtian und Tian, Jiaojiao und Reinartz, Peter (2023) Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification. Sensors, 23 (9), Seite 4179. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s23094179. ISSN 1424-8220.
PDF
- Verlagsversion (veröffentlichte Fassung)
8MB |
Offizielle URL: https://www.mdpi.com/1424-8220/23/9/4179
Kurzfassung
Multispectral sensors are important instruments for Earth observation. In remote sensing applications, the near-infrared (NIR) band, together with the visible spectrum (RGB), provide abundant information about ground objects. However, the NIR band is typically not available on low-cost camera systems, which presents challenges for the vegetation extraction. To this end, this paper presents a conditional generative adversarial network (cGAN) method to simulate the NIR band from RGB bands of Sentinel-2 multispectral data. We adapt a robust loss function and a structural similarity index loss (SSIM) in addition to the GAN loss to improve the model performance. With 45,529 multi-seasonal test images across the globe, the simulated NIR band had a mean absolute error of 0.02378 and an SSIM of 89.98%. A rule-based landcover classification using the simulated normalized difference vegetation index (NDVI) achieved a Jaccard score of 89.50%. The evaluation metrics demonstrated the versatility of the learning-based paradigm in remote sensing applications. Our simulation approach is flexible and can be easily adapted to other spectral bands.
elib-URL des Eintrags: | https://elib.dlr.de/194247/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Learning-Based Near-Infrared Band Simulation with Applications on Large-Scale Landcover Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 22 April 2023 | ||||||||||||||||
Erschienen in: | Sensors | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 23 | ||||||||||||||||
DOI: | 10.3390/s23094179 | ||||||||||||||||
Seitenbereich: | Seite 4179 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | multispectral; remote sensing; NIR; RGB; cGAN; Sentinel-2; SEN12MS; robust loss; SSIM | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Yuan, Xiangtian | ||||||||||||||||
Hinterlegt am: | 21 Aug 2023 09:31 | ||||||||||||||||
Letzte Änderung: | 31 Aug 2023 16:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags