Yang, Yi-Jie und Singha, Suman und Goldman, Ron (2023) Integration of a Deep Learning Based Oil Spill Detection System into an Early Warning System for the Southeastern Mediterranean Sea. SeaSAR 2023, 2023-05-02 - 2023-05-06, Svalbard, Norway.
PDF
524kB |
Kurzfassung
Deep learning based techniques have been applied in different environmental monitoring applications, including oil spill detection. This study aims to provide an oil spill detection and early warning system in order to take quick action for clean up operations for minimizing the environmental impact. Oil spills in the spaceborne Sentinel-1 Synthetic Aperture Radar (SAR) data are detected by a trained deep learning based object detector. The detections are then defined as binary masks by the segmentation method. Afterwards, the slick trajectory simulation is carried out. The system is running automatically on a regular basis when there are expected Sentinel-1 acquisitions. However, to avoid unnecessary clean up operations on false alarms, the system requires manual confirmation before sending a warning to the corresponding decision makers. The system performance should be evaluated with detailed analysis, but the feasibility of building such an automated oil spill detection and early warning system has been shown.
elib-URL des Eintrags: | https://elib.dlr.de/194028/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Conference: https://seasar2023.esa.int/ | ||||||||||||||||
Titel: | Integration of a Deep Learning Based Oil Spill Detection System into an Early Warning System for the Southeastern Mediterranean Sea | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2023 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-3 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR, Oceanography, deep learning, oil, oil spill detection, warning system, Mediterranean Sea | ||||||||||||||||
Veranstaltungstitel: | SeaSAR 2023 | ||||||||||||||||
Veranstaltungsort: | Svalbard, Norway | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 2 Mai 2023 | ||||||||||||||||
Veranstaltungsende: | 6 Mai 2023 | ||||||||||||||||
Veranstalter : | ESA | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||
Hinterlegt am: | 13 Nov 2023 13:09 | ||||||||||||||||
Letzte Änderung: | 01 Mai 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags