elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Fast Yet Accurate Timing and Power Prediction of Artificial Neural Networks Deployed on Clock-Gated Multi-Core Platforms

Dariol, Quentin und Le Nours, Sebastien und Helms, Domenik und Stemmer, Ralf und Pillement, Sebastien und Grüttner, Kim (2022) Fast Yet Accurate Timing and Power Prediction of Artificial Neural Networks Deployed on Clock-Gated Multi-Core Platforms. Association for Computing Machinery (ACM). RAPIDO'23: Rapid Simulation and Performance Evaluation for Design Optimization: Methods and Tools, 2023-01-16 - 2023-01-18, Toulouse, France. doi: 10.1145/3579170.3579263. ISBN 979-8-4007-0045-3/23/01. (im Druck)

[img] PDF
700kB

Kurzfassung

When deploying Artificial Neural Networks (ANNs) onto multi- core embedded platforms, an intensive evaluation flow is necessary to find implementations that optimize resource usage, timing and power. ANNs require indeed significant amounts of computational and memory resources to execute, while embedded execution plat- forms offer limited resources with strict power budget. Concurrent accesses from processors to shared resources on multi-core plat- forms can lead to bottlenecks with impact on performance and power. Existing approaches show limitations to deliver fast yet accurate evaluation ahead of ANN deployment on the targeted hardware. In this paper, we present a modeling flow for timing and power prediction in early design stage of fully-connected ANNs on multi-core platforms. Our flow offers fast yet accurate predictions with consideration of shared communication resources and scalabil- ity in regards of the number of cores used. The flow is evaluated on real measurements for 42 mappings of 3 fully-connected ANNs exe- cuted on a clock-gated multi-core platform featuring two different communication modes: polling or interrupt-based. Our modeling flow predicts timing with 97 % accuracy and power with 96 % accu- racy on the tested mappings for an average simulation time of 0.23 s for 100 iterations. We then illustrate the application of our approach for efficient design space exploration of ANN implementations.

elib-URL des Eintrags:https://elib.dlr.de/193755/
Dokumentart:Konferenzbeitrag (Vorlesung)
Titel:Fast Yet Accurate Timing and Power Prediction of Artificial Neural Networks Deployed on Clock-Gated Multi-Core Platforms
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dariol, Quentinquentin.dariol (at) dlr.dehttps://orcid.org/0000-0002-3284-6882NICHT SPEZIFIZIERT
Le Nours, Sebastiensebastien.le-nours (at) univ-nantes.frhttps://orcid.org/0000-0002-1562-7282NICHT SPEZIFIZIERT
Helms, Domenikdomenik.helms (at) dlr.dehttps://orcid.org/0000-0001-7326-200XNICHT SPEZIFIZIERT
Stemmer, Ralfralf.stemmer (at) dlr.dehttps://orcid.org/0000-0002-8302-7713NICHT SPEZIFIZIERT
Pillement, Sebastiensebastien.pillement (at) univ-nantes.frhttps://orcid.org/0000-0002-9160-2896NICHT SPEZIFIZIERT
Grüttner, KimKim.Gruettner (at) dlr.dehttps://orcid.org/0000-0002-4988-3858NICHT SPEZIFIZIERT
Datum:25 November 2022
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1145/3579170.3579263
Seitenbereich:Seiten 1-8
Verlag:Association for Computing Machinery (ACM)
ISBN:979-8-4007-0045-3/23/01
Status:im Druck
Stichwörter:Power Model, Artificial Neural Networks, Multi-Core, System Level Simulation
Veranstaltungstitel:RAPIDO'23: Rapid Simulation and Performance Evaluation for Design Optimization: Methods and Tools
Veranstaltungsort:Toulouse, France
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 Januar 2023
Veranstaltungsende:18 Januar 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität > System Evolution and Operation
Hinterlegt von: Dariol, Quentin
Hinterlegt am:08 Feb 2023 08:36
Letzte Änderung:24 Apr 2024 20:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.