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ABSTRACT
When deploying Artificial Neural Networks (ANNs) onto multi-
core embedded platforms, an intensive evaluation flow is necessary
to find implementations that optimize resource usage, timing and
power. ANNs require indeed significant amounts of computational
and memory resources to execute, while embedded execution plat-
forms offer limited resources with strict power budget. Concurrent
accesses from processors to shared resources on multi-core plat-
forms can lead to bottlenecks with impact on performance and
power. Existing approaches show limitations to deliver fast yet
accurate evaluation ahead of ANN deployment on the targeted
hardware. In this paper, we present a modeling flow for timing and
power prediction in early design stage of fully-connected ANNs on
multi-core platforms. Our flow offers fast yet accurate predictions
with consideration of shared communication resources and scalabil-
ity in regards of the number of cores used. The flow is evaluated on
real measurements for 42 mappings of 3 fully-connected ANNs exe-
cuted on a clock-gated multi-core platform featuring two different
communication modes: polling or interrupt-based. Our modeling
flow predicts timing with 97 % accuracy and power with 96 % accu-
racy on the tested mappings for an average simulation time of 0.23 s
for 100 iterations. We then illustrate the application of our approach
for efficient design space exploration of ANN implementations.
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1 INTRODUCTION
With the tremendous growth of the Internet-of-Things market, the
need for smart applications requiring the execution of Artifical
Intelligence algorithms on edge devices have become predomi-
nant. Commonly Artificial Neural Networks (ANNs) are the main
adopted solution to solve classification or regression problems in
that scope. The deployment of ANNs on edge devices is tough due
to their high computational and memory needs, while resources
are limited on embedded platforms with strict power budget. The
optimization of ANN algorithms on resource limited multi-core
platforms with shared communication resources requires intensive
evaluation to meet timing and power constraints. To help develop-
ers finding optimized ANN deployment on edge devices, an early
and efficient evaluation flow is required. Several approaches are
already proposed in that field. Many focus on evaluation through
systematic implementation and characterization of ANNs on a real
platform [20] [17] [4]. Others propose analytical models that offer
limited scalability for a wide range of platforms of varying complex-
ity [13] [6]. Especially on multi-core platforms one difficulty comes
from the accurate prediction of shared resource contention, which
has non-negligible impact on timing and power consumption.

In this paper we propose a modeling flow for fast yet accurate
timing and power prediction of ANN deployments on multi-core
platforms. Our flow supports scalability regarding the partitioning
of the ANN, the number of cores used and the communication
workload. It can be used for platforms that rely on either polling-
based or interrupt-based communications and which include power
management of the platform resources through the use of clock gat-
ing. In this paper we show that the communication procedure that
optimizes timing and power differs based on the ANN deployment
at test and must therefore be established on a case-by-case basis.
Our flow can thus help engineers identify the adequate communi-
cation procedure in order to optimize the ANN deployment for the
considered applications. To validate the proposed modeling flow,
we compared the average predicted power consumption against
the real power consumption measured on an implementation plat-
form. The modeling flow has demonstrated to predict timing with
97 % accuracy and power with 96 % accuracy for 42 mappings of 3
fully-connected ANNs on multi-core platforms containing up to 7
cores. We also show how the modeling flow can be used in a Design
Space Exploration (DSE) process in order to identify deployments
that optimize energy, power, latency and cost.

In Section 2 we present the contributions of our work compared
to the state-of-the-art. We then explain our work hypothesis and
how the power model was built and integrated into our system level
modeling flow in Section 3. In Section 4 we present and discuss the
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Figure 1: Overview of the proposed modeling flow. Contributions are highlighted in orange. Red files correspond to predicted
time and energy files. Blue files correspond to measured time and power.

experimental setup used to perform the calibration of the power
model and the validation of our approach. An example of the use of
our modeling flow to perform DSE is also given. Section 5 provides
our conclusion on this work and prospects for future work.

2 RELATEDWORK
Several approaches have already been led to tackle the challenge
of power/energy evaluation of ANNs on embedded systems. An
important number of these approaches is focused on the monitoring
of the ANN deployed on the targeted device in a Hardware-in-the-
Loop setup [10] [2] [20] [17] [4]. These approaches rely on an
automatized exploration workflow to generate and test numerous
possible mappings through their deployment on the targeted edge
device and evaluation through measurements. The effort to obtain
evaluation results is however important as all mappings must be
deployed and tested. The implementation technology is also fixed
due to the need of having the real platform in the loop which can
limit the possibilities in regards to architectural exploration.

To offer an evaluation of candidate mappings before their de-
ployment, other flows proposed DSE setups relying on the use of
a power model. NNest [6], Timeloop [13] and MAESTRO [7] are
systematic approaches that offer an evaluation of time, power and
cost of candidate ANN accelerators implementations using high
level models. In these approaches, the emphasis is put on the explo-
ration of algorithmic optimizations on the ANN and architectural
alternatives simultaneously to offer a highly optimized accelerator.
Communications in the accelerator are built based on the dataflow
of the input ANN, which leads to highly optimized communica-
tions which can be modeled using elementary analytical models.
These approaches are hence not easily transposable to tile-based
multi-core architectures, on which overheads in latency and power
consumption due to communications are not marginal and must be
properly modeled. For these architectures, a system level simulation
flow must be proposed in order to guarantee an accurate prediction
of latency, power and cost in reasonable time.

The authors of [19], [11] and [1] propose a system level simula-
tion flow for multi-core platforms with power models calibrated
through measurement. [16] proposes a systematic methodology to
automatically calibrate power models for simulation components
based on execution traces. When targeting ANN implementation,

the modeling can be further adapted to offer faster prediction with
similar accuracy. In [3] we proposed our hybrid simulation flow
based on analytical elementary models calibrated through mea-
surements for timing prediction of fully-connected ANNs deployed
on multi-core platforms. In this paper, we extend this work to the
following contributions:

(1) A power modeling flow for ANNs deployed on multi-core
platforms. We propose a power model calibrated by mea-
surement for fully-connected ANNs deployed on multi-core
platforms which implements a clock gating mechanism and
either polling or interrupt-based communications.

(2) The validation and assessment of efficiency of the modeling
flow by comparing time and power predictions against real
measurements. This flow has been tested and validated for
several mappings of fully-connected ANNs on platforms
containing up to 7 cores, and is respectively 97% and 96%
accurate for timing and power prediction.

(3) The demonstration of the application of the proposed mod-
eling flow for DSE of ANN mappings under timing, power
and cost (number of cores) constraints with prediction of the
impact of using polling or interrupt-based communications.

3 PROPOSED MODELING FLOW
3.1 Flow presentation and work hypothesis
Figure 1 gives an overview of the workflow to build and validate the
proposed power model. The power model expresses the dynamic
and static power consumption of the multi-core platform executing
ANNs. It is further presented in Section 3.3. This model is based
on the activity executed by cores on the platform, and is charac-
terized through measurement. The first phase aims at calibrating
the power model. During the execution of ANNs on the platform,
cores perform two main activities: neurons computation and com-
munications. The power consumption of cores differs based on the
activity being performed. We define therefore a power consumption
characterization strategy 1 in order to calibrate the power model
in regards to these activities. Different mappings are considered
independently of the applications in order to characterize the static
power consumption of the platform, the evolution of the consump-
tion based on the number of cores running and the consumption of
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Figure 2: Example of mapping of an ANN described as SDF
graph on the two considered architectures.

the bus and shared memory. We then perform a regression on the
obtained power profiles to calibrate the power model 2 .

Once the power model calibrated, the next activity aims at the
validation of the modeling flow for timing and power prediction
of ANNs. To demonstrate the scalability of the flow, several map-
pings of different fully-connected ANNs are considered 3 . In this
work we rely on the Synchronous Data Flow (SDF) [9] Model of
Computation (MoC). It allows several representations of ANNs at
various levels of granularity. We reuse the definition introduced
in [3] for the partitioning of SDF graphs: each layer of the ANN
is partitioned into actors, which are composed of a set of neurons.
Actors issued from the same ANN layer have equitable workload
in terms of neurons to compute. The communication channels of
the SDF graph correspond to the communications between actors.
Several SDF graphs of different complexity in terms of number
of actors and communication channels can be generated from the
same ANN. The Model of Architecture (MoA) is composed of a set
of tiles, each composed of a single Processing Element (PE) and
a private memory for instructions and data. A shared memory is
accessible through a communication bus. Actors are mapped on
tiles and communication channels are mapped on the shared mem-
ory. In this work, two versions of the MoA are considered with
different communication procedures: one features polling-based
communications, the other interrupt-based communications. Tiles
also implement a clock gating mode in which their power consump-
tion is reduced. An example of ANN mapped on the two different
versions of the MoA is given in Figure 2.

The execution traces of candidate deployments are predicted
using the SystemC simulation approach presented in [3] 4 . The
power model uses the execution traces from the SystemC simula-
tion to predict the power consumption of the system 5 . To validate
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Figure 3: Observation of possible execution traces and pre-
dicted power for the two communication modes.

the power modeling flow, we also measure the real power consump-
tion of candidate deployments on the implementation platform 6
and we evaluate the accuracy of the predictions against these mea-
surements. Once the model validated, it can be used in a DSE setup
to find ANNs deployment that meet latency, power, energy and
cost constraints.

3.2 Power management strategy
When executing ANNs on multi-core platforms, dependencies be-
tween actors in the application can lead to important durations
when tiles are blocked due to the unavailability of resources needed
for their execution. An example is given in Figure 3: Tile1 (T1)
needs to read data contained in the communication channel HL-OL
to execute, but this data has first to be written by Tile0. Therefore
Tile1 is blocked and must wait until the data is available. When
waiting tiles are not contributing to the execution of the ANN. They
can therefore be switched to a lower power consumption mode. To
this end we choose to implement the clock gating power saving
mechanism, as presented in [14]. This power management tech-
nique allows to dynamically reduce the power consumption of tiles
by temporarily disabling their input clock signal. Clock gating does
not reduce the static power consumption of circuits as they are
still supplied with power. It however allows removing the dynamic
part of power consumption as all activities are suspended when
the clock is disabled. It also has the advantage of offering minimal
overheads in latency due to the ease of enabling and disabling the
clock signal and the low delay needed by the tile to resume its
execution. In order to evaluate the impact of clock gating on ANN
execution on tile-based multi-core platforms, we considered two
versions of the MoA, as depicted in Figure 2:
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(1) One version with polling-based communications and with-
out the use of clock gating: when a tile needs unavailable
data to execute, it polls the shared memory until the data is
available.

(2) One version with interrupt-based communications and with
the use of clock gating: when a tile needs unavailable data
to execute, it enters low power mode until it is woken up
by an interrupt signal, which indicates that the data is now
available.

The two different communication modes are illustrated in Fig-
ure 2. The interrupt-based platform introduces an interrupt con-
troller peripheral to manage the interrupt signal, and clock gating
controllers to manage the activation and deactivation of clock gat-
ing mode. The clock gating mode is activated when a tile requires
currently unavailable data. A clock-gated tile resumes its execu-
tion when the interrupt signal is enabled. The interrupt signal is
enabled by the interrupt controller peripheral when requested by a
tile. A tile requests the interrupt controller to generate a interrupt
following a read/write transaction, in order to indicate to other
tiles which are currently clock-gated that data is now available
in the shared memory. Figure 3 shows how the communications
are handled on the two different architectures, and the impact on
power consumption. The additional circuits of the interrupt-based
platforms add a contribution to power. However, they allow using
the clock gating mode when waiting for data, instead of polling
on the shared memory, which leads to power reduction. The best
communication procedure when considering the impact on power
consumption depends therefore on the studied deployment, and
must be addressed on a case-by-case basis by the evaluation flow.

3.3 Power modeling
The power model is built by performing power characterization
through measurements on the targeted platform, as depicted in Fig-
ure 1 with phases 1 and 2 . During the execution of an ANN, tiles
execute computation or communication activities. The dynamic
power consumption of the platform executing ANNs can thus be de-
scribed using two terms: 𝑃Σ𝑐𝑜𝑚𝑝 (𝑡), the total power consumption of
tiles in computation mode at time 𝑡 and 𝑃Σ𝑐𝑜𝑚𝑚 (𝑡), the total power
consumption in communication mode at time 𝑡 . To obtain the total
power consumption of the system 𝑃Σ (𝑡), the static power consump-
tion of the circuit 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 must also be considered. Equation 1 gives
the proposed model for the total instant power consumption of
ANNs on tile-based multi-core platforms.

𝑃Σ (𝑡) = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃Σ𝑐𝑜𝑚𝑝 (𝑡) + 𝑃Σ𝑐𝑜𝑚𝑚 (𝑡) (1)
When tiles are in the computation activity, they are processing

actors (i.e. sets of neurons as presented in Section 3.1). They are
therefore independent from one another as all necessary data is
contained in the private memory of the tile. We introduce 𝑃𝑐𝑜𝑚𝑝,𝑖 ,
the power consumption of tile 𝑖 in computation mode. The platform
is assumed to be homogeneous, hence 𝑃𝑐𝑜𝑚𝑝,𝑖 = 𝑃𝑐𝑜𝑚𝑝∀𝑖 . We also
introduce 𝛼𝑐𝑜𝑚𝑝,𝑖 , the computation activity factor of tile 𝑖 . 𝛼𝑐𝑜𝑚𝑝,𝑖
is equal to 1 at time 𝑡 if tile 𝑖 is currently in computation mode else,
it is equal to 0. 𝛼𝑐𝑜𝑚𝑝,𝑖 is obtained from the estimated execution
traces obtained from the SystemC model (See Figure 1, phase 4 ).
The evolution of 𝑃Σ𝑐𝑜𝑚𝑝 increases hence linearly with the number

of tiles currently in this activity. Equation 2 gives the model for
𝑃Σ𝑐𝑜𝑚𝑝 .

𝑃Σ𝑐𝑜𝑚𝑝 (𝑡) =
𝑁𝑡𝑖𝑙𝑒𝑠∑︁
𝑖=1

𝑃𝑐𝑜𝑚𝑝,𝑖𝛼𝑐𝑜𝑚𝑝,𝑖 (𝑡)

with
𝑃𝑐𝑜𝑚𝑝,𝑖 = 𝑃𝑐𝑜𝑚𝑝 (Homogeneous platform hypothesis)

𝛼𝑐𝑜𝑚𝑝,𝑖 (𝑡) =
{
1 if tile 𝑖 in computation mode at time 𝑡
0 otherwise

(2)

When tiles are in the communication activity, they either: 1.
perform a read or write in the shared memory, 2. wait for the
availability of data. As depicted in the automates on Figure 2, tiles
operate differently when waiting based on the selected communica-
tion procedure: they either poll the shared memory or enter clock
gating mode. Read, write and polling operations in the shared mem-
ory are intertwined and are thus modeled together as 𝑃Σ

𝑅𝑊𝑃
. The

contribution of clock gated tiles on the total power consumption is
modeled as 𝑃Σ

𝐶𝐺
. Equation 3 gives the model for 𝑃Σ𝑐𝑜𝑚𝑚 .

𝑃Σ𝑐𝑜𝑚𝑚 (𝑡) = 𝑃Σ𝑅𝑊𝑃 (𝑡) + 𝑃
Σ
𝐶𝐺 (𝑡) (3)

We introduce 𝑃𝑆𝑀 the consumption of tiles when accessing the
shared memory. The shared memory is a unique shared resource.
When several tiles try to access the shared memory simultaneously,
only one tile get access to it and the others are postponed until
the shared memory is free. The shared memory can be accessed
by only one tile at any given time 𝑡 . The total power consumption
in read, write and polling activities 𝑃Σ

𝑅𝑊𝑃
(𝑡) is hence either equal

to 𝑃𝑆𝑀 when at least one tile is in this activity, or 0 otherwise. We
introduce the read, write and polling activity factor for tile 𝑖 at time
𝑡 : 𝛼𝑅𝑊𝑃,𝑖 (𝑡). 𝛼𝑅𝑊𝑃,𝑖 (𝑡) is equal to 1 if tile 𝑖 is executing this activity
at time 𝑡 else 0 and is obtained from the estimated execution traces.
The model for 𝑃Σ

𝑅𝑊𝑃
is given in Equation 4.

𝑃Σ𝑅𝑊𝑃 (𝑡) = 𝑃𝑆𝑀
𝑁𝑡𝑖𝑙𝑒𝑠⋃
𝑖=1

𝛼𝑅𝑊𝑃,𝑖 (𝑡)

with 𝛼𝑅𝑊𝑃,𝑖 (𝑡) =


1 if tile 𝑖 uses the shared memory

at time 𝑡
0 otherwise

(4)

𝑃Σ𝐶𝐺 (𝑡) =
𝑁𝑡𝑖𝑙𝑒𝑠∑︁
𝑖=1

𝑃𝐶𝐺,𝑖𝛼𝐶𝐺,𝑖 (𝑡)

with

𝑃𝐶𝐺,𝑖 = 𝑃𝐶𝐺

𝛼𝐶𝐺,𝑖 (𝑡) =


1 if tile 𝑖 is in clock gating (CG)

mode at time 𝑡
0 otherwise

(5)

When tiles are clock gated, they are independent from one an-
other. We introduce 𝑃𝐶𝐺,𝑖 , the power consumption of tile 𝑖 in com-
putation mode. The platform is assumed to be homogeneous, hence
𝑃𝐶𝐺,𝑖 = 𝑃𝐶𝐺 . The evolution of 𝑃𝐶𝐺,𝑖 increases hence linearly with
the number of tiles currently in this activity. We introduce the clock
gated activity factor for tile 𝑖 at time 𝑡 : 𝛼𝐶𝐺,𝑖 (𝑡). 𝛼𝐶𝐺,𝑖 (𝑡) is equal
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to 1 if tile 𝑖 is clock gated at time 𝑡 else 0 and is obtained from the
estimated execution traces. Equation 5 gives the model for 𝑃Σ

𝐶𝐺
.

(𝐸𝐾 ) : 𝑃Σ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝐾 =𝑃𝑠𝑡𝑎𝑡𝑖𝑐 +
𝑁𝑡𝑖𝑙𝑒𝑠∑︁
𝑖=1

𝛼𝑐𝑜𝑚𝑝,𝑖,𝐾𝑃𝑐𝑜𝑚𝑝,𝑖

+ 𝑃𝑆𝑀
𝑁𝑡𝑖𝑙𝑒𝑠⋃
𝑖=1

𝛼𝑅𝑊𝑃,𝑖,𝐾

+
𝑁𝑡𝑖𝑙𝑒𝑠∑︁
𝑖=1

𝛼𝐶𝐺,𝑖,𝐾𝑃𝐶𝐺,𝑖

(6)

𝛼𝑐𝑜𝑚𝑝,𝑖 (𝑡), 𝛼𝑅𝑊𝑃,𝑖 (𝑡) and 𝛼𝐶𝐺,𝑖 (𝑡) are obtained through the es-
timated simulation traces (Figure 3). The base power consumptions
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑃𝑐𝑜𝑚𝑝 , 𝑃𝑅𝑊𝑃 and 𝑃𝐶𝐺 must be obtained through charac-
terization. To obtain the base power consumptions, we measure
power profiles on the platform associated to the identified activities,
and apply multi-linear regression to solve a system of equations
(𝐸𝐾 ) as presented in Equation 6. In this equation 𝐾 corresponds
to the number of a measured power characterization profile. 𝐾
is also the equation number in the system. The 𝛼𝐾 terms are set
for the configuration at test and 𝑃Σ

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝐾
is obtained through

measurement. At least 𝑁𝑡𝑖𝑙𝑒𝑠 power characterization profiles must
be obtained for each identified activity (computation and commu-
nication: read, write, polling and clock gating) to correctly perform
the characterization. To obtain the power characterization profiles
we measure the power consumption of the system for each activity
in the following configurations:

(1) All tiles are disabled to characterize 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 .
(2) Each tile is set to execute the activity individually when

others are disabled to verify that all tiles have the same
contribution to power consumption and thus the validity of
the homogeneous platform hypothesis,

(3) Tiles are progressively enabled and tasked to execute the
activity to characterize the evolution of power when several
tiles are enabled together.

(4) Complementary configurations are also considered to fur-
ther constrain and improve the quality of the regression of
the power profiles. Testing all possible configurations on
platforms with numerous tiles would require an important
characterization effort. Instead we generated randomly a
tenth of additional configurations in which tiles are arbitrar-
ily either set in activity or disabled.

3.4 Integration in SystemC simulation
To predict the latency of ANNs on tile-based multi-core platforms,
we presented in [3] a high level simulation flow in SystemC. The
simulation flow allows predicting the execution traces and deduce
from them the latency. The flow relies on two separate base models
calibrated through measurement: one for actor computation time
and one for communication time. Compared to [3] we have updated
the communication time model calibration for interrupt-based com-
munications with clock gating. The execution traces delivered by
the simulation flow contain time markers with current mode for
each tile. A new marker is generated when a tile changes its state

during the execution. The tile state corresponds to the activity be-
ing executing (actor computation, read/write transaction on shared
memory, clock gating, polling). Figure 3 gives an example of traces
output by the SystemC simulation. The power model presented
in Section 3.3 is used as post processing of the execution traces
output by the SystemC simulation. The model is used to predict the
evolution of power consumption during the execution of the ANN.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Experimental setup
In order to calibrate the proposed modeling flow and evaluate the
prediction accuracy, we implemented a tile-based multi-core plat-
form which respects the MoA to obtain real time and power mea-
surements. Two versions of the platform are implemented: one
which relies on interrupt-based communications with clock gating
and one which relies on polling-based communications without
clock gating, as presented in Figure 2. The platforms are imple-
mented on a Xilinx ZCU102 board, which features a UltraScale
MPSoC+ FPGA. They are implemented on the programmable logic
section of the FPGA. The processing core of the tiles is a MicroBlaze.
The private memory of tiles and the shared memory are imple-
mented as Block Rapid Access Memory (BRAM), which is internal
to the FPGA SoC. The communication medium to access the shared
memory is implemented as a shared interconnect Advanced eX-
tensible Interface (AXI). In the clock gating version, the interrupt
controller and the clock gating controller are IPs provided by Xilinx.
The implementation platform is composed of 7 tiles.

The targeted FPGA features several power supply levels. We
probed VCCINT which corresponds to the supply voltage of the
programmable logic of the FPGA and VCCBRAM which corresponds
to the supply voltage for the BRAM. The BRAM supply voltage is
already well optimized by the provider as discussed in [15], and we
observed no variation of power consumption on VCCBRAM when
performing our tests. In fact, the activity linked to memory usage
is observed rather on the VCCINT power supply, as the memory
controllers are implemented on the programmable logic part of the
FPGA. The correctness of this observation is confirmed through
the use of the Xilinx Power Estimator (XPE) [18] available in Vi-
vado, which predicts marginal dynamic contribution to the system
consumption on the VCCBRAM voltage supply. For this reason, we
focus entirely on VCCINT power consumption in this study.

The measurement infrastructure for timing validation is pre-
sented in [3]. The power measurements are obtained using the R&S
HMC8012 Digital Multimeter at a sampling rate of ≈ 100 samples
per second. As the execution times measured are in the order of
milliseconds or even hundreds of microseconds, we took a large
number of records (4000) for each considered measurement in order
to obtain a representative sample of the system consumption. We
then checked that the deviation was marginal and used the average
of the measurements.

4.2 Power model calibration
As presented in Section 3.3, we measured the power consumption
profiles of the platform in order to calibrate the proposed model.
Using multi-linear regression, we validated the hypothesis that the
platform is homogeneous so the tiles share the same base power
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consumption for each identified activity. We observed that the
static consumption of the platform with interrupt-based communi-
cations is 4 % higher than its polling counterpart, with 𝑃𝑠𝑡𝑎𝑡𝑖𝑐,𝑝𝑜𝑙𝑙𝑖𝑛𝑔
measured equal to 1.227W and 𝑃𝑠𝑡𝑎𝑡𝑖𝑐,𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 = 1.260W. This
raise of the observed static consumption is due to the introduction
of the interrupt and clock gating controllers. We also measured:
𝑃𝑐𝑜𝑚𝑝 = 0.058W, 𝑃𝑆𝑀 = 0.063W and 𝑃𝐶𝐺 = −0.058W. 𝑃𝐶𝐺 is set
negative by the multi-linear regression tool due to the use of 𝑃𝑠𝑡𝑎𝑡𝑖𝑐
as reference, which is obtained when all tiles are disabled. Clock
gated tiles consume less than disabled tiles, which leads thus to a
negative value. We observed that when all tiles are clock gated on
the interrupt-based platform, the power consumption is reduced of
32% compared to the consumption of the polling-based platform
when all tiles are disabled.

To provide a more thorough verification of our calibration, we
compare our power model with the estimations provided by XPE
[18]. XPE is a tool included in Vivado which allows predicting the
power consumption of a FPGA design after the synthesis and im-
plementation steps. The tool offers two default settings: maximum
for high activity rates of all components of the system and typical
for standard use activity rates. We used the typical setting. When
comparing the power model built through characterization with
the consumption predicted by this tool we observed that our mea-
surements and the built power model were in the same scale as the
predicted data from XPE. The static consumption of the circuit on
VCCINT are estimated respectively as 1.227W and 1.260W for the
two versions of the platform by XPE which corresponds precisely
to the measured static consumption. XPE estimates that the AXI
shared memory controller consumes 0.024W and tiles consume
0.050W on average which also fits our observations for 𝑃𝑐𝑜𝑚𝑝
and 𝑃𝑆𝑀 . The typical setting doesn’t allow however verifying the
consumption of tiles in clock gated mode (𝑃𝐶𝐺 ).

4.3 Validation of the modeling flow
Three fully-connectedANNs have been considered to test our power
modeling flow. These different use-cases offer a variety of complex-
ity as well as different communication workloads which leads to
a comprehensive validation of our modeling flow. Two of these
ANNs were trained on the MNIST [8] handwritten digit recognition
dataset. Both have a input layer composed of 784 neurons and an
output layer composed of 10 neurons. They differ in the number
and size of hidden layers: the first network, referred to asM1 in the
rest of paper has one hidden layer of 10 neurons, while the second
network, referred to as M2, is composed of two hidden layers of
respectively 32 and 16 neurons. M1 has 85% classification accu-
racy and M2 has 89 % classification accuracy. The third considered
ANN, referred to as G, was trained on the German Traffic Sign
Recognition Benchmark (GTSRB) [5] dataset. In order to enable the
processing on the platform due to the complexity of the dataset, we
had to remove neurons to reduce data size of the GTSRB ANN. For
this reason G has only 20 % classification accuracy. G is composed
of a input layer of 512 neurons, two hidden layers of 30 neurons
each and an output layer of 43 neurons. The three considered ANNs
were trained using the LibFANN open source deep learning frame-
work [12]. They all use the ReLU activation function. We tested
and stressed our flow in regards to the following aspects:

(1) Consideration of applications of variable complexity. We
used SDF graphs with limited amount of actors and com-
munication channels, respectively 2 and 3 as lowest, as well
as complex SDF graph featuring up to 22 actors and 113
communication channels.

(2) Consideration of single-core mappings as well as multi-core
mappings containing up to 7 tiles. The multi-core mappings
leverage both ANN in-layer parallelism and intra-layer par-
allelism. This allows optimizing both inference time and
throughput for ANN execution.

(3) Consideration of mappings with high and low communica-
tion rates. The lowest observed communication rate is 2%
on one mapping and the highest is 70 % on another mapping.

(4) Consideration of mappings with polling-based communica-
tions without the use of clock gating and mappings with
interrupt-based communications in which cores are clock
gated when waiting for the availability of data.

A total of 42 different mappings are tested, which corresponds
to different partitionings and mappings of the 3 considered fully-
connected ANNs. We predicted the end-to-end latency, execution
traces and power of the considered mappings, and we measured
the real end-to-end latency and power on the execution platform
for validation. The power predictions are compared with the power
measurements obtained through the same power measurement
infrastructure that allowed performing the calibration.

The graphs in Figure 4 show the predicted end-to-end latency and
power consumption and the prediction error against the measure-
ments for each tested mapping. The presented power consumption
values in the graphs contain both static and dynamic components.
The graph is separated into two sub-graphs: the first one is dedicated
to polling-based communications, the second to interrupt-based
communications with clock gating. Each sub-graph is then sepa-
rated into two categories: single-core and multi-core executions.
Table 1 summarizes the results by providing the average and worst
observed error of tested scenarios.

Table 1: Average and worst prediction error of the modeling
flow against measurements on considered mappings.

Type of scenario
Polling Clock gating + interrupt

Timing Power Timing Power
avg worst avg worst avg worst avg worst

Single core 0.36 % 0.75 % 1.97 % 2.28 % 0.39 % 0.95 % 0.63 % 2.08 %
Multi core 0.59 % 2.85 % 1.06 % 2.43 % 0.89 % 2.21 % 1.64 % 3.93 %

On the 42 tested mappings, the proposed modeling flow offers
a prediction accuracy of 97% on timing and 96% on power. As
shown in Table 1, the worst observed prediction error is 2.85 % on
timing and 3.93 % on power. The timing prediction error is very low
for both single-core and multi-core mappings with both communi-
cation procedures as shown in Table 1 and Figure 4. The highest
observed errors are 2.85%, reached with polling-based communi-
cations on M1 partitioned in 7 actors and mapped on 7 cores with
a communication rate of 70%, and 2.21% for the interrupt-based
communications on M1 with 15 actors and mapped on 7 tiles with
a communication rate of 55 %. All other tested mappings have pre-
diction errors lower than 2 %.
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Figure 4: Predicted end-to-end latency (in processor cycles) and power con-
sumption (in W) by the proposed modeling flow for 42 mappings of 3 differ-
ent fully-connected ANNs with polling-based and interrupt-based commu-
nications. In X-axis the tested ANN M1, M2 or G, followed by the number
of tiles used 𝑇𝑁 , the number of actors and the average communication rate
(time spent in read, write and waiting) of tiles are provided.
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Figure 5: Use of the modeling flow to evaluate
the execution time (in processor cycles), power
(in W) and energy (in mJ) of 84 mappings of
the ANNM1, with polling-based and interrupt-
based communications. Mappings that optimize
the energy consumption are connected with
lines.

The power predictions are satisfying for both considered commu-
nication procedures as shown in Table 1 and Figure 4. The highest
power prediction error is 3.93% on G with 7 actors executed on
7 cores with interrupt-based communications, and 2.43% for the
same mapping with polling-based communications. This mapping
presents an estimated communication rate (waiting + read/write)
of approximately 70 % regardless of the communication procedure,
and in both cases the power model underestimates the power con-
sumption. On the polling-based platform, this can be explained by
the high amount of simultaneous polling on the shared memory.
On the interrupt-based platform, only one interrupt signal is imple-
mented. Therefore all clock-gated tiles are simultaneously woken
up and try to obtain data from the shared memory. The updated
data is only available for one tile, the others re-enters the clock-
gated mode again after checking the shared memory. However, due
to all tiles simultaneously accessing the shared memory, overheads
in power consumption which are not modeled can be observed. At
the proposed level of abstraction, the observed error is acceptable.
Overall on the 42 considered mapping, the average prediction error
of the power model is less than 2 %.

A key advantage of the proposed modeling flow is the simulation
time required to obtain time and power predictions. The high level
of abstraction of the models combined with the characterization
through measurements allows offering a simulation time of 0.23 s
on average for 100 simulated iterations of the application on the
platform on an Intel Core i5-8250U CPU @ 1.60GHz. When also
including the compilation time of the model, the time taken to
evaluate a mapping is on average 20 s which is 2 times less than

the compilation, programming and measurement time on the real
platform using our configuration (approximately 40 s). XPE [18]
could also be used to estimate the power consumption with a eval-
uation time of approximately 3minutes (without considering the
synthesis of the FPGA design and configuration of XPE). The low
evaluation time of our modeling flow is an important feature as
it can be used to perform a fast and intensive evaluation of ANN
mappings on multi-core platforms and help engineers to quickly
identify optimized solutions that meet their constraints.

The proposed modeling flow is built with the requirement to sup-
port scalability. Re-using the proposed flow on different tile-based
multi-core architectures should require minimum effort. The timing
modeling flow has been characterized on AXI bus communication,
hence targeting different communication medium would require
another characterization phase. When calibrating the power model,
chip provider data can be used when available instead of a charac-
terization through measurement to minimize development effort.
Once done, this flow is able to predict accurately the execution time
and power consumption of any fully-connected ANN deployed on
tile-based multi-core platforms.

4.4 Use of the modeling flow to explore the
design space

Once validated the modeling flow can be used to explore the de-
sign space in order to find mappings that optimize the deployment
of a user defined ANN. An example of the use of the modeling
flow evaluating 84 different mappings for M1 in regards to latency,
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power, energy, and number of cores is given in Figure 5. The en-
ergy consumption for one iteration is obtained by multiplying the
execution time with the average power consumption. The Pareto
front of mappings that optimize energy is depicted using lines on
the energy consumption curve. We also connected these mappings
on the plots of execution time and power consumption.

When comparing the mappings of the Pareto front when using
up to 3 tiles, polling-based communications allows saving energy
over interrupt-based communications. When using 6 and 7 tiles
interrupt-based communications offer lower energy consumption.
The difference between the two communication modes is marginal
for 4 tiles. Polling-based communications allow however saving
6 % energy on 5 tiles and offer the second lowest energy consump-
tion (1.58mJ) identified during the evaluation. The lowest energy
consumption (1.52mJ) is obtained with interrupt-based communi-
cations on 7 tiles, and it allows saving 11 % energy compared to the
best mapping on 7 tiles using polling. This shows that the compari-
son of candidate deployments using the modeling flow can lead to
important energy savings. It can be noted that for the considered
application, mappings that offer the most optimized energy con-
sumption for a given number of tiles also offer the most optimized
latency for that tile number.

The compilation and simulation of 100 iterations for each of
the 84 candidate deployments required 28 minutes in total (ap-
proximately 20 s per candidate) on an Intel Core i5-8250U CPU
@ 1.60GHz. In comparison, we estimate that it would take approx-
imately 1 hour when using our automatized deployment and mea-
surement infrastructure on the real platform (40 s per candidate),
and 4 hours using XPE (3min per candidate, without considering
the synthesis of the FPGA design and configuration time of XPE).
The proposed approach can thus lead to important gains of time
when evaluating numerous candidate deployments.

5 CONCLUSION
This paper presents a timing and power modeling flow for eval-
uation of fully-connected ANN deployment on multi-core plat-
forms with clock gating capabilities. The power model is calibrated
through measurement by characterizing the power consumption
of activities led by cores on the platform when executing ANNs.
The modeling flow allows predicting timing with more than 97%
accuracy and power with more than 96 % accuracy on 42 different
mappings of three fully-connected ANNs. The models are fast to
execute with an average simulation time of 0.23 s for 100 iterations.
This approach allows comparing two different communication pro-
cedures: polling-based communications without the use of clock
gating, and interrupt-based communications with the use of clock
gating. The use of the flow to evaluate possible mappings of one
ANN on up to 7 cores allows identifying the number of cores and
communication procedure to use in order to optimize timing, power
and energy consumption. The proposed flow can be calibrated to be
used with other tile-based multi-core platforms either through the
use of power profiling data given by the chip provider or through
measurements. In future work, we will extend this flow to other
classes of neural networks such as CNNs and we will automatize
the use of the modeling flow in a DSE loop to find deployments
that meet user defined constraints.
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