Lewen, Jan (2022) Deep learning inversion of a raytracer for heliostat surface prediction. SFERA III / 16th SOLLAB Doctoral Colloquium, 2022-09-12 - 2022-09-14, Zürich.
PDF
- Nur DLR-intern zugänglich
2MB |
elib-URL des Eintrags: | https://elib.dlr.de/193387/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Deep learning inversion of a raytracer for heliostat surface prediction | ||||||||
Autoren: |
| ||||||||
Datum: | 14 September 2022 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | CSP, Deep learning, mirror error prediction | ||||||||
Veranstaltungstitel: | SFERA III / 16th SOLLAB Doctoral Colloquium | ||||||||
Veranstaltungsort: | Zürich | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 12 September 2022 | ||||||||
Veranstaltungsende: | 14 September 2022 | ||||||||
Veranstalter : | ETH Zürich | ||||||||
HGF - Forschungsbereich: | Energie | ||||||||
HGF - Programm: | Energiesystemdesign | ||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||
DLR - Schwerpunkt: | Energie | ||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie, R - Künstliche Intelligenz | ||||||||
Standort: | Köln-Porz | ||||||||
Institute & Einrichtungen: | Institut für Solarforschung Institut für Solarforschung > Solare Kraftwerktechnik | ||||||||
Hinterlegt von: | Lewen, Jan | ||||||||
Hinterlegt am: | 25 Jan 2023 13:38 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags