elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Enabling country-scale land cover mapping with meter-resolution satellite imagery

Tong, Xin-Yi und Xia, Gui-Song und Zhu, Xiao Xiang (2023) Enabling country-scale land cover mapping with meter-resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 196, Seiten 178-196. Elsevier. doi: 10.1016/j.isprsjprs.2022.12.011. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://dx.doi.org/10.1016/j.isprsjprs.2022.12.011

Kurzfassung

High-resolution satellite images can provide abundant, detailed spatial information for land cover classification, which is particularly important for studying the complicated built environment. However, due to the complex land cover patterns, the costly training sample collections, and the severe distribution shifts of satellite imageries caused by, e.g., geographical differences or acquisition conditions, few studies have applied high-resolution images to land cover mapping in detailed categories at large scale. To fill this gap, we present a large-scale land cover dataset, Five-Billion-Pixels. It contains more than 5 billion labeled pixels of 150 high-resolution Gaofen-2 (4 m) satellite images, annotated in a 24-category system covering artificial-constructed, agricultural, and natural classes. In addition, we propose a deep-learning-based unsupervised domain adaptation approach that can transfer classification models trained on labeled dataset (referred to as the source domain) to unlabeled data (referred to as the target domain) for large-scale land cover mapping. Specifically, we introduce an end-to-end Siamese network employing dynamic pseudo-label assignment and class balancing strategy to perform adaptive domain joint learning. To validate the generalizability of our dataset and the proposed approach across different sensors and different geographical regions, we carry out land cover mapping on five megacities in China and six cities in other five Asian countries severally using: PlanetScope (3 m), Gaofen-1 (8 m), and Sentinel-2 (10 m) satellite images. Over a total study area of 60,000 km2, the experiments show promising results even though the input images are entirely unlabeled. The proposed approach, trained with the Five-Billion-Pixels dataset, enables high-quality and detailed land cover mapping across the whole country of China and some other Asian countries at meter-resolution.

elib-URL des Eintrags:https://elib.dlr.de/193363/
Dokumentart:Zeitschriftenbeitrag
Titel:Enabling country-scale land cover mapping with meter-resolution satellite imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tong, Xin-Yixinyi.tong (at) dlr.dehttps://orcid.org/0000-0001-9832-7973NICHT SPEZIFIZIERT
Xia, Gui-Songguisong.xia (at) whu.edu.cnhttps://orcid.org/0000-0001-7660-6090NICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) tum.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:10 Januar 2023
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:196
DOI:10.1016/j.isprsjprs.2022.12.011
Seitenbereich:Seiten 178-196
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Land cover mapping; High-spatial resolution; Classification; Deep learning; Transfer learning; Domain adaptation; Dataset; Gaofen-2; Gaofen-1; PlanetScope; Sentinel-2; Megacity
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Tong, Xinyi
Hinterlegt am:24 Jan 2023 12:34
Letzte Änderung:02 Feb 2023 18:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.