elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detection and Analysis of Critical Interactions in Illegal U-Turns at an Urban Signalized Intersection

Schicktanz, Clemens und Gimm, Kay (2025) Detection and Analysis of Critical Interactions in Illegal U-Turns at an Urban Signalized Intersection. Data Science for Transportation. Springer Nature. doi: 10.1007/s42421-025-00117-5. ISSN 2948-1368.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://link.springer.com/article/10.1007/s42421-025-00117-5

Kurzfassung

Before automated vehicles can safely operate in real-world traffic, it is crucial to ensure their reliability not only in normal conditions but also in rare and critical situations, such as traffic conflicts. Understanding these critical situations is essential for generating test cases that ensure robust system performance. However, current models of real-world traffic behavior in such situations are limited. This study addresses this gap by detecting rare critical situations at an urban signalized intersection, analyzing road user behavior, and deriving relevant parameter distributions through a long-term analysis of naturalistic trajectory data. Specifically, we focus on interactions between motorized road users (MRU) and crossing vulnerable road users (VRU) in illegal U-turn scenarios. Using over 180 days of video recordings, we extracted 9 million trajectories and identified four critical MRU-VRU interactions utilizing Surrogate Safety Measures and deceleration metrics. The analysis reveals that these interactions occur when the VRU traffic light switches from red to green. In addition, we descriptively model the driving behavior to generate parameter distributions for U-turn scenarios. Unlike previous studies, we differentiate between object classes, allowing us to effectively illustrate variations in curve radius - such as median values of 8.1 m for cars, 9.7 m for vans, and 14.3 m for trucks. Our results demonstrate an approach for modeling traffic participant behavior using large-scale trajectory data, showcasing a use case of data science in transportation and contributing valuable insights for simulation-based testing and scenario generation in automated vehicle development.

elib-URL des Eintrags:https://elib.dlr.de/193165/
Dokumentart:Zeitschriftenbeitrag
Titel:Detection and Analysis of Critical Interactions in Illegal U-Turns at an Urban Signalized Intersection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schicktanz, ClemensClemens.Schicktanz (at) dlr.dehttps://orcid.org/0000-0002-3234-2086178769250
Gimm, Kaykay.gimm (at) dlr.dehttps://orcid.org/0000-0002-5136-685X178769251
Datum:4 Februar 2025
Erschienen in:Data Science for Transportation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1007/s42421-025-00117-5
Verlag:Springer Nature
ISSN:2948-1368
Status:veröffentlicht
Stichwörter:Long-term data analysis, Naturalistic trajectory data, Descriptive behavior modelling, U-turn
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Digitalisierter Straßenverkehr
Hinterlegt von: Schicktanz, Clemens
Hinterlegt am:24 Feb 2025 09:04
Letzte Änderung:05 Mär 2025 10:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.