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Abstract
Before automated vehicles can safely operate in real-world traffic, it is crucial to ensure their reliability not only in normal 
conditions but also in rare and critical situations, such as traffic conflicts. Understanding these critical situations is essential 
for generating test cases that ensure robust system performance. However, current models of real-world traffic behavior in 
such situations are limited. This study addresses this gap by detecting rare critical situations at an urban signalized intersec-
tion, analyzing road user behavior, and deriving relevant parameter distributions through a long-term analysis of naturalistic 
trajectory data. Specifically, we focus on interactions between motorized road users (MRU) and crossing vulnerable road 
users (VRU) in illegal U-turn scenarios. Using over 180 days of video recordings, we extracted 9 million trajectories and 
identified four critical MRU–VRU interactions utilizing Surrogate Safety Measures and deceleration metrics. The analysis 
reveals that these interactions occur when the VRU traffic light switches from red to green. In addition, we descriptively 
model the driving behavior to generate parameter distributions for U-turn scenarios. Unlike previous studies, we differentiate 
between object classes, allowing us to effectively illustrate variations in curve radius—such as median values of 8.1 m for 
cars, 9.7 m for vans, and 14.3 m for trucks. Our results demonstrate an approach for modeling traffic participant behavior 
using large-scale trajectory data, showcasing a use case of data science in transportation and contributing valuable insights 
for simulation-based testing and scenario generation in automated vehicle development.
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Introduction

Automated vehicles  (AVs) are expected to change the 
transportation system dramatically and reduce the num-
ber of crashes (Fagnant and Kockelman 2015). However, 
AVs cannot be expected to be reliable and safe in every 
situation (Dixit et al. 2016; Martens and van den Beukel 
2013). Although it was found that collisions with pedestri-
ans are less common for AVs than for conventional vehicles 
(Petrović et al. 2020), the development of AVs is not yet 
advanced enough to reach an acceptable level of trust in the 

broad society. Therefore, the validation of autonomous vehi-
cles is essential to ensure that the AVs behave as expected in 
rare critical situations and increase trustfulness.

The testing of AVs is conducted worldwide, with signifi-
cant efforts aimed at bringing AVs closer to market release. 
According to Riedmaier et al. (2020), the scenario-based 
approach is a promising method for safety assessment in 
simulation. As the name suggests, this approach involves 
testing AVs in multiple scenarios by varying the parameters 
of each scenario, all within virtual simulations. Accurate 
parameterization of these scenarios is crucial for realistically 
simulating both, the vehicle under test and the surrounding 
traffic participants. Naturalistic trajectory data offers great 
potential for deriving realistic parameter distributions, as it 
captures real-world traffic conditions with a high level of 
detail. However, since AVs currently represent only a small 
fraction of vehicles in everyday traffic, naturalistic trajec-
tory data and scenarios recorded by AVs themselves are 
scarce. This lack of data makes it challenging to compare 
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rare critical situations and to identify the situational factors 
that contribute to their occurrence.

Infrastructurally recorded trajectory data provides an 
advantage in this context, as it captures similar scenarios 
multiple times at the same location, making it easier to 
derive different variations of a scenario. However, to the best 
of the authors' knowledge, large data sets from specific loca-
tions have not yet been utilized to prepare truly rare events 
for scenario-based testing.

Our contribution addresses this research gap and is 
divided into two parts. First, we provide a methodology 
to detect illegal U-turn scenarios in real-world trajectory 
data. This methodology enables the extraction of compre-
hensive parameter distributions, which can be subsequently 
employed to model logical scenarios involving illegal 
U-turns. Second, we show, that for rare critical scenarios, 
called corner cases (CC), a vast amount of naturalistic trajec-
tory data is required to ensure their inclusion in the data set. 
For this, we detect the CCs in a data set from the Application 
Platform for Intelligent Mobility (AIM) Research Intersec-
tion (Knake-Langhorst and Gimm 2016) and analyze the 
CCs to identify factors that promoted criticality.

All in all, this paper demonstrates how infrastructurally 
recorded data can be leveraged, using the example of an ille-
gal U-turn, to address the research gap. It is emphasized that 
this represents just one illustrative scenario and forms only 
a part of a broader scenario database of rare events. Such a 
database is essential for validating and securing automated 
driving functions, particularly against illegal behavior in 
urban environments. By integrating this approach, we aim 
to contribute to the systematic preparation of rare but critical 
scenarios for scenario-based testing.

The remaining paper is structured as follows. “Literature 
Review” section summarizes related work in the relevant 
fields of research. In “Methodology” section, the proposed 
methodology for U-turn scenario identification and analysis 
is introduced. “Results and Discussion” section presents and 
discusses the results of applying our method to a data set. 
Finally, the work concludes with a summary, including an 
outlook on future work in “Conclusion” section.

Literature Review

The research fields of scenario-based testing, trajectory anal-
ysis, and modelling of traffic behavior have been studied for 
many years. Therefore, the relevant literature is presented in 
the following subsections.

Scenario‑Based Testing

This work aims to provide parameter distributions for a logi-
cal scenario. To ensure a common understanding of the term 

logical scenario, we take over the following definition of a 
scenario. “A scenario describes the temporal development 
between several scenes in a sequence of scenes. Every sce-
nario starts with an initial scene. Actions & events as well as 
goals & values may be specified to characterize this tempo-
ral development in a scenario. Other than a scene, a scenario 
spans a certain amount of time” (Ulbrich et al. 2015).

Three years after defining the term scenario, Menzel et al. 
(2018) differentiated the following three different scenario 
levels of abstraction. The most abstract is the functional sce-
nario, which describes all entities and their relationships 
using a linguistic scenario notation. Somewhat less abstract 
are the logical scenarios, which are scenarios composed of 
parameter ranges or probability distributions of parameters 
and even parameter correlations. The less abstract one is the 
concrete scenario that can be derived by choosing a concrete 
expression for each parameter of a logical scenario.

In the following paragraph, we explain the connection 
between our contribution and scenario-based testing. The 
primary contribution of this study lies in the identification 
of various concrete scenarios in the large trajectory data set 
and their aggregation into a logical scenario, which serves 
as input for a scenario database. These scenarios can sub-
sequently be employed by other researchers to evaluate the 
performance of automated driving functions, particularly 
those designed to handle non-compliant behaviors of other 
road users in urban settings. The calibration of automated 
driving functions can be facilitated using the methodol-
ogy described in Fraikin et al. (2020). For further insights 
into scenario-based testing, please refer to (Cai et al. 2022; 
Zhong et al. 2021; Riedmaier et al. 2020; Nalic et al. 2021).

Corner Cases in the Context of Automated Driving

The development of automated driving functions continues 
to advance. Now that AVs can maneuver through simple sit-
uations with increasing reliability, the focus of the research 
is shifting to the reliability of the functions in complex, criti-
cal, and rare situations, as driving functions must perform 
as expected in these situations, commonly referred to as 
corner cases (CCs). According to Bogdoll et al. (2021), in 
the context of automated driving, a CC represents data that 
occurs irregularly, describes a potentially critical situation, 
and rarely, if ever, occurs in data sets. As AVs become more 
widespread, the likelihood of vehicles encountering such 
unexpected situations increases. Therefore, it is crucial to 
consider CCs in the development of AVs.

To handle the various occurrences of CCs in a struc-
tured manner, efforts are being made to systematize them. 
For example, Breitenstein et al. (2020) propose a grouping 
for image recognition according to the level of complex-
ity in detecting CCs. These levels are ordered by ascend-
ing complexity, the pixel-, domain-, object-, scene-, and 
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scenario-level. In addition, there is a guideline for detecting 
CCs at different levels (Breitenstein et al. 2021). Heidecker 
et al. (2021) take up the results of the previously mentioned 
work and extend it by distinguishing the CCs concerning 
the sensor modality (camera, lidar, and radar) to provide an 
application-oriented conceptualization.

To the best of our knowledge, none of the existing stud-
ies incorporate CCs in the analysis of trajectory data. Only 
two studies explicitly address this topic (Rösch et al. 2022; 
Schicktanz and Gimm 2025). In Rösch et al. (2022), CCs in 
trajectory data are categorized according to their source of 
failure and data that is needed to detect the CC. The authors 
combine this information to propose a taxonomy of CCs in 
trajectory data for autonomous driving and show examples. 
Schicktanz and Gimm (2025) analyze scenarios involving 
hard braking maneuver, red-light violations, and near misses 
under adverse conditions. In comparison, this study does not 
address the extraction of parameter distributions for logi-
cal analyses. The overviews of Meng et al. (2019) and Saul 
et al. (2014) show that there are different approaches for 
detecting rare situations such as trajectory outliers or atypi-
cal trajectories. However, as CCs in trajectory data require 
a rare and critical traffic situation, detecting only rare situa-
tions is not enough. The same holds for the identification of 
only critical scenarios that can be detected using Surrogate 
Safety Measures (SSM), because they do not need to be rare 
(Wang et al. 2021). In addition, even the identification of 
safety-relevant scenarios (Weber et al. 2019), does not take 
into account that the scenarios need to occur irregularly to 
be a CC. Finally, the use of a large data set, such as the one 
utilized in this study is essential for identifying rare and 
critical real-world situations.

Data Sets

To show that our data set is comparable large, we compare 
it with other publicly available ones in the following. Pub-
lic data sets can be divided by the type of recording into 
three classes. Either car, infrastructural mounted cameras, or 
drones recorded them. Another class of data sets is scenario 
data sets which contain the extracted scenarios.

Dozens of open data sets collected by cars on public roads 
are reviewed (Guo et al. 2020; Kang et al. 2019; Yin and 
Berger 2017). According to Guo et al. (2020), the largest 
publicly available data set that was recorded by a car and 
collected data over a long period is the Oxford RobotCar 
data set. It was recorded to capture the same spots in vary-
ing contexts (e.g., weather, time of day, traffic volume) and 
contains over 100 sequences of a consistent route that were 
recorded twice a week for 1 year (Maddern et al. 2017).

The most widely used publicly available infrastructurally 
collected trajectory data set is the “Next generation simu-
lation (NGSIM)” trajectory data set (Kovvali et al. 2007). 

The data set has been widely used for empirical traffic flow 
analysis and was collected in 2006 with a size of several 
thousand trajectories with a length of 600 m and a tem-
poral extent of 15 min (Seo et al. 2020). According to Seo 
et al. (2020), the largest publicly available infrastructurally 
recorded data set to the date of publication is the Zen Traffic 
Data data set, with a scope of 18,000 trajectories, each of 
them two kilometers in length, from records of 5 h. Smaller 
trajectory data sets recorded from stationary cameras have 
also been made publicly available recently (Cres et al. 2022; 
Zernetsch et al. 2022).

The first publicly available trajectory data set recorded 
by a drone was the Stanford drone data set (Robicquet et al. 
2016), with 10,240 trajectories from 9 h of recording. Later, 
the highD data set was recorded by drones flying 16.5 h over 
highways and extracting 110,000 vehicle trajectories at six 
different locations (Krajewski et al. 2018). And finally, the 
openDD data set was published as the largest drone data set 
to date of publication in 2020, containing 84,774 trajectories 
from 62.7 h of recording (Breuer et al. 2020).

The aforementioned data sets contain trajectories. Efforts 
have already been made to extract scenarios from data sets 
and build up databases of scenarios instead. There is a so-
called StreetWise database that contains real-world traffic 
scenarios from multiple continents (Elrofai et al. 2018). 
According to StreetWise, the process of extracting scenarios 
from data sets is also referred to as scenario mining. In addi-
tion, other scenario databases have been mined by others 
(Klitzke et al. 2022; Zhu et al. 2018).

Finally, we found that all these publicly available data sets 
and databases have a lower amount of data from a specific 
place than the data set examined in this work consisting of 
over 4000 h of recordings and over 9 million trajectories 
from a single intersection.

Critical Interactions in Road Traffic

This work aims to contribute to the understanding and miti-
gation of critical interactions in the context of road traffic 
safety. As a basis for critical interactions, the term interac-
tions need to be understood first. Therefore, we take over 
the following definition. “A situation where the behaviour 
of at least two road users can be interpreted as being influ-
enced by the possibility that they are both intending to 
occupy the same region of space at the same time in the 
near future”(Markkula et al. 2020).

The identification of critical interactions provides valu-
able insights that can contribute to preventing similar inter-
actions in the future. This approach is supported by findings 
from previous research, such as the study by Habibovic et al. 
(2013) conducted in Japan, which highlights the importance 
of understanding the dynamics of road user interactions. 
Their research showed that incidents involving cars and 
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pedestrians result from drivers failing to recognize pedes-
trians or unexpected pedestrian behavior. By focusing on 
critical interactions, we build on this foundation, aiming to 
identify patterns and contributing factors that can inform 
targeted safety measures and reduce the likelihood of such 
incidents.

Other studies delve into the modelling and evaluation of 
behavior within safety–critical interactions. For instance, 
Abdelhalim and Abbas (2022) employs an optimal velocity 
model to capture safety–critical driver behavior at signalized 
intersections. The evaluation of driving behavior's safety 
aspects is addressed theoretically, while behavior is system-
atically classified through simulation in Yang et al. (2022).

U‑Turn Modelling

The modelling and simulation of U-turns received par-
ticular attention in research when median U-turns were 
introduced to replace left turns at busy intersections and 
thereby increase traffic safety (Liu et al. 2012). Therefore, 
various studies from different countries and different types 
of intersections exist and are about the influence of U-turns 
on traffic flow and efficiency in general (Al-Masaeid 1999; 
Mazaheri et al. 2022; Mikhailov and Shesterov 2020; Liu 
et al. 2007; Leng et al. 2009; Sun et al. 2019; Peng and 
Yujing 2020; Shahi and Choupani 2009; Olarte et al. 2011; 
Che Puan et al. 2015). In addition, the detection of illegal 
U-turns has been investigated already (Song and Lee 2014; 
Wang et al. 2018; Rathore et al. 2021).

In one study safety related topics are studied, too. Olarte 
et al. (2011) built regression models based on traffic density 
and volume. They also simulated U-turns using software 
called VISSIM (Fellendorf 1994) to show that the number 
of conflicts rises when a specific traffic volume is exceeded. 
Other studies used the simulator VISSIM for simulating 
U-turns, too (Peng and Yujing 2020; Sun et al. 2019; Leng 
et al. 2009; Liu et al. 2012). Another microscopic traffic 
simulation software called SUMO “Simulation of Urban 
Transportation” (Krajzewicz 2010) was used to generate 
U-turn scenarios (Yue et al. 2020). Although the authors 
describe that the scenarios can be used for scenario-based 
testing, the resulting data is generated by simulation and 
does not necessarily represent real-world behavior.

In some studies, real-world data are used to analyze 
the interactions with the oncoming traffic. Che Puan et al. 
(2015) use stationary video recordings of more than 2,000 
U-turning vehicles and analysis software to extract the gap 
acceptance of U-turning vehicles to the oncoming traffic 
(Che Puan et al. 2015). They found that at high traffic vol-
umes, the U-turns often lead to a reduced traffic flow in 
oncoming traffic. Mohanty and Dey (2020) model the inter-
action with the oncoming vehicles, too. They focus on their 
lane change behavior as a reaction to the U-turning vehicles.

All in all, many references use traffic efficiency-related 
parameters such as traffic volume, flow, and density. Some of 
them, like gap acceptance (Che Puan et al. 2015), percentage 
of left turns (Leng et al. 2009) and median width (Liu et al. 
2007), are used only by single references. Furthermore, there 
exist two studies using kinematic parameters like the turn-
ing speed of U-turns (Liu et al. 2012; Zheng et al. 2009). In 
summary, there is an overlap with other studies in just one 
parameter utilized for U-turn modelling, namely, the param-
eter "speed", which was used in previous studies (Liu et al. 
2012; Zheng et al. 2009). Our trajectory data offers insights 
into microscopic traffic, allowing us to utilize more detailed 
parameters, such as curve radius and vehicle heading. These 
parameters are not used by others.

Furthermore, our research focuses exclusively on interac-
tions between U-turning vehicles and vulnerable road users 
(VRUs) at signalized intersections, a topic not explored in 
previous literature. Specifically, our study delves into how to 
model this scenario for scenario-based testing and examines 
the differences in U-turning behavior across different object 
classes, aspects that have not been investigated before.

Summary

In summary, this study distinguishes itself from previous 
work in two key aspects. Unlike prior studies, it utilizes 
a large real world data set to capture a specific rare sce-
nario, enabling the extraction of detailed parameters. This 
approach allows for the use of multiple parameters, such as 
speed, acceleration, and heading, and facilitates comparisons 
across different object classes, providing a more comprehen-
sive understanding of the scenario.

Methodology

In the following, we present the steps to descriptively model 
the U-turning vehicles and detect the corner cases. All steps 
were executed using our own Python package “Traffic 
Analysis and Situation Interpretation” (TASI) (Klitzke and 
Schicktanz 2024). Parts of the software are publicly avail-
able at github.com: https://​github.​com/​dlr-​ts/​tasi.

In the first step, relevant elements of the OpenDRIVE 
map (Scholz 2020) are extracted as virtual loops (VLs) 
to model the routes of the U-turning motorized road 
users (MRUs) and the crossing VRUs. The data set is then 
filtered by identifying which trajectories intersect with these 
VLs. Trajectories that intersect all relevant VLs of a route 
are assigned to the corresponding route. Trajectories that do 
not intersect all loops of a specific route are excluded from 
the data set. This filtering process is applied to both MRU 
and VRU trajectories.

https://github.com/dlr-ts/tasi
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To descriptively model the U-turning MRU, three differ-
ent sorts of parameters are defined, and correlations between 
the parameters are analyzed. The first group of parameters 
models the general aspects of the scenario and includes the 
object class (car, van, truck) and the descriptive statistics 
(minimum, maximum, mean, median, and standard devia-
tion) of the parameters velocity and acceleration.

The second group of parameters describes the kinematic 
behavior of the U-turning traffic participant during the 
maneuver. To achieve this, the U-turn is divided into sec-
tions using VLs which are strategically placed at key loca-
tions: at the entry point to the intersection, the entry point 
to the oncoming lane, the entry point to the VRU crossing, 
and the exit of the VRU crossing. These positions are cho-
sen, because they mark critical conflict points, where the 
U-turning vehicle interacts with conflicting traffic streams. 
The parameters heading, speed, acceleration, and the dis-
tance to the reference line are then calculated at each inter-
section between a trajectory and a VL. In addition, the time 
required for a vehicle to pass the area between two consecu-
tive VLs, as well as the total time between the first and last 
VL are calculated to describe the temporal component of the 
scenario. For a visualization of the VLs, see Fig. 2.

The third group of parameters contains only the post-
encroachment time (PET), which is used to model the inter-
action and criticality between the participants of the sce-
nario. The PET is defined as the time between the moments 
when two road users pass the same position (Allen et al. 
1978). We chose the parameter PET, because it is widely 
regarded as an effective metric for assessing the severity 
of interactions, particularly in safety–critical scenarios. 
Furthermore, it facilitates a detailed analysis of temporal 
spacing, allowing for consistent comparisons across vari-
ous traffic situations and providing valuable insights into 
conflict dynamics (Kassim et al. 2014). In the scenario under 
investigation, the PET is calculated between all U-turning 
and relevant VRU trajectories. A VRU trajectory is con-
sidered relevant if it coincides temporally with the MRU 
trajectory. In addition to temporal filtering, special filtering 
is also applied. Specifically, only intersections located in the 
area of the VRU crossings of the western exit are considered 
relevant to the scenario, while intersections at the entrance 
of the MRU to the intersection are excluded from this study.

The result of this filtering process is a compilation of 
PET values for pairs of road users. Based on these values, 
encounters are defined as instances, where road users pass 
each other with a PET between 2 and 5 s. Situations with 
an absolute PET value below 2 s are categorized as interac-
tions. This threshold was chosen based on the assumption 
that road users passing a conflict point within this time win-
dow would have mutually recognized each other, thus inter-
acting in a meaningful way. Next, we assessed whether the 
road users involved in theses interactions decelerated with 

more than 1 m/s2. If this condition was met, the interaction 
was categorized as critical.

The threshold of 1 m/s2 for deceleration was determined 
after reviewing the situations filtered by PET. We found that 
all critical interactions exceeded this deceleration value. This 
threshold for braking acceleration depends on the speed of 
the vehicle, and thus had to be empirically determined for 
the U-turn scenario. The selected PET threshold are also 
based on findings from previous studies (Peesapati et al. 
2013, 2018; Ansariyar 2023), ensuring alignment with 
established research in the field. To validate the results, the 
filtered videos were thoroughly reviewed, allowing for a 
detailed check of the observed interactions. This approach 
ensures that the chosen parameters are both theoretically 
grounded and empirically verified. This validation step, 
involving the review of video recordings, was also conducted 
to filter out inaccuracies in trajectory data and to enhance the 
robustness of the methodology.

In addition, the video recordings of the interactions were 
analyzed to identify the parameters that contributed to the 
interaction. These parameters are then correlated with the 
PET values to assess the statistical relationship between the 
parameters and the SSM. The correlation between two ran-
dom variables, X and Y  , is described by the Pearson cor-
relation coefficient �

X,Y (Pearson 1895), as defined in the 
following equation:

with cov(X, Y) is the covariance of the random variables and 
�
X
 and �

Y
 are their standard deviations (Benesty et al. 2009). 

In the following a correlation of 0.3 ≤ 𝜌
X,Y < 0.5 is consid-

ered “weak”, 0.5 ≤ 𝜌
X,Y < 0.8 is considered “moderate” and 

�
X,Y ≥ 0.8 is considered “strong”.

Results and Discussion

This section applies the described method to a data set, with 
the findings discussed in detail. First, the examined data set 
and scenario are introduced. The modeling of U-turns and 
the detection and analysis of critical collisions (CCs) are 
then presented.

Data Set

The data set used in this study was recorded at the AIM 
Research Intersection, which is part of the Institute of Trans-
portation Systems at the German Aerospace Center. The 
intersection is an urban multi-lane intersection located on 
the inner-city ring road of Braunschweig, Germany. It is 
equipped with 14 vertical stereo-camera systems positioned 

(1)�
X,Y =

cov(X, Y)

�
X
�
Y
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at various locations to ensure comprehensive coverage and 
minimize occlusions of traffic participants. The data set con-
sists of 4553 h, or approximately 190 days, of video record-
ings, spanning from January 21 to September 5, 2019. Dur-
ing this period, 9,166,560 trajectories of traffic participants 
were extracted. For more information about data recording 
and preparation please refer to (Knake-Langhorst and Gimm 
2016) The analyzed data set is significantly larger than other 
publicly available data sets captured by infrastructure (Cres 
et al. 2022; Zernetsch et al. 2022; Seo et al. 2020), with the 
largest data set (Seo et al. 2020) containing 18,000 trajecto-
ries from 5 h of recordings. One day of data from the AIM 
Research Intersection is publicly available (Schicktanz et al. 
2024).

The trajectories of the data set include kinematic informa-
tion, such as position, velocity, and acceleration along the 
x and y axes in the Universal Transverse Mercator (UTM) 
coordinate system, recorded at a frequency of 25 Hz. In addi-
tion, the data set encompasses estimations of the road users' 
dimensions (length, width, and height), which are used to 

classify the objects into one of the following categories: car, 
van, truck, pedestrian, or bicycle. The resulting probabilities 
associated with each object’s classification are provided for 
each timestamp within the trajectory data. A portion of the 
center position values from the trajectory data set is shown 
in Fig. 1. All trajectory figures are oriented northwards.

In the west of the intersection, executing a U-turn is pro-
hibited by a traffic sign. Nevertheless, some traffic partici-
pants violate this regulation and perform U-turns from the 
lane designated for left-turning vehicles. As this maneuver 
involves an unprotected left turn, vehicles must wait for 
oncoming traffic from the east to pass or for a sufficiently 
large gap between two oncoming vehicles to execute the 
turning maneuver safely. Typically, after yielding to oncom-
ing traffic, the U-turn is completed by exiting the intersec-
tion to the west.

This scenario was selected, because it represents a fre-
quently occurring rule violation at the intersection, mak-
ing it suitable for descriptive modeling and statistical cor-
relation analysis. Since the data from the traffic lights are 

Fig. 1   Trajectories from traf-
fic participants on the AIM 
research intersection recorded 
between 9 and 11 PM on the 
21st of January 2019. Back-
ground image reference:  © The 
City of Brunswick, Department 
Geographic Information
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not considered, the scenario shares many similarities with 
U-turns at unsignalized intersections. In addition, the U-turn 
is only prohibited at the western entrance to the intersec-
tion, meaning that data from permitted U-turns at the other 
entrances cannot be used in this study.

Trajectory Filtering

The trajectories of U-turning vehicles must be filtered from 
the data set using VLs extracted from the digital map of 
the intersection (Scholz 2020). Since the VLs are manually 
selected for this U-turn scenario, automating the extraction 
of the VLs could be a valuable component of further work, 
facilitating the application of the methodology to other data 
sets. The VLs and the corresponding trajectories that inter-
sect all VLs are visualized in Fig. 2.

The 1st virtual loop (green) is placed along the inner edge 
of the bicycle crossing. This position was chosen, because, 
at this point, all U-turning MRUs are detected for the first 
time by the system at the latest. Specifically, the left lane 
border of the oncoming traffic (east to west) is the next crit-
ical marking (red). In addition, the U-turning MRUs exit 
the intersection by passing the VRU crossing, so the inner 
(orange) and outer (yellow) edges of this crossing are also 
considered as VLs. An area between two consecutive loops 
is referred to as a section in the following. By calculating the 
intersections between U-turning MRU trajectories and VLs, 
4,051 trajectories (0.04% of the data set) of illegal U-turns 
are detected.

Using the same methodology but with different VLs, the 
relevant trajectories of VRUs are extracted from the data 
set. For this extraction, the lane borders at transitions from 
dropped curbs to roadways are modeled as VLs, and inter-
sections with the trajectories are computed. Some of these 
extracted trajectories, which intersect both VLs, are shown 
in Fig. 3.

Descriptive Model of a U‑Turn

This section presents an overview of the general character-
istics of U-turns, the kinematic parameters at the VLs, and 
interactions with VRUs.

Fig. 2   All trajectories of 
U-turning vehicles in the west 
of the intersection. Background 
image reference:  © The City 
of Brunswick, Department 
Geographic Information

Fig. 3   VRU trajectories of the first 10  h in the west of the inter-
section. Background image reference:  © The City of Brunswick, 
Department Geographic Information
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General Aspects

The data set includes 3,663 U-turn trajectories of cars, 244 
U-turn trajectories of vans, and 144 U-turn trajectories of 
trucks. Analysis of the time of day when these U-turns occur 
(see Fig. 4) reveals that, on average, vans (10:35 AM) and 
trucks (9:20 AM) perform U-turns earlier in the day than 
cars (01:00 PM). This pattern may be attributed to the fact 
that vans and trucks are more commonly used as work vehi-
cles during the day, whereas private cars are predominantly 
used in the evening when fewer work-related trips occur.

In Table 1, we preset the mean values of the descriptive 
statistics of the velocities for each trajectory. Specifically, 
vmin represents the mean of all minimum velocity values 
across the trajectories. Based on this analysis, one might 
expect smaller MRUs, such as cars, to exhibit higher veloci-
ties than bigger MRUs, such as trucks. However, this expec-
tation is not supported by the data. As shown in Table 1, 
the minimum, mean, and median velocities of trucks are 
higher than the corresponding values for cars. A potential 
explanation for this observation could be the later detection 
of trucks, resulting in shorter waiting times before crossing 
the 2nd VL. Reduced waiting time decreases the number of 
low-velocity values, thereby elevating the mean and median 
velocities. However, this reasoning does not apply to vans, 
which consistently show lower velocities than cars, as ini-
tially anticipated. This observation raises the possibility of 
increased data error, as trucks, being large road users, pre-
sent significant challenges for accurate detection. Extensive 
data preprocessing could improve data quality, leading to 
more realistic outcomes and enhancing the contribution of 
this study. Although trucks take approximately twice as long 
as cars to traverse the second (7.0 s vs. 3.2 s) and third sec-
tion (1.9 s vs. 1.2 s), their time for the first section (11.3 s 
vs. 11.0 s) is not significantly longer. This is because the 

duration required for the first section is primarily influenced 
by waiting time.

The descriptive statistics analysis of the measured accel-
eration values per trajectory supports the assumption that, on 
average, cars exhibit higher acceleration than larger MRUs 
(see Table 2). This pattern holds for all descriptive statistics 
except for the minimum acceleration. Since many trajecto-
ries include data from scenes, where the MRUs are station-
ary, the minimum acceleration for numerous trajectories is 
0. As a result, the mean minimum acceleration across all 
object classes is 0.

Kinematic Parameters at Virtual Loops

The VLs shown in Fig. 2 are used not only for filtering the 
trajectories but also for extracting the heading (0° to the east, 
increasing counterclockwise), the time and kinematic param-
eter (position, velocity, and acceleration) at the intersection 
of the trajectories with the VLs. Four of the five variables 
are determined at each of the four loops, while the "dura-
tion until the next loop" is calculated only for the first three 
loops, as it cannot be computed for the last one. This results 
in a total of 19 parameters. Based on this data, the kinematic 
behavior of the U-turning vehicles is descriptively modeled. 
In Table 3, the mean parameter values of cars are presented.

In addition to the 19 parameters from Table 3, the overall 
duration of the U-turn is analyzed as the 20th parameter. 
The results show that larger MRUs take longer to complete 
a U-turn (cars 15.41 s, vans 18.58 s, trucks 20.21 s). This 
difference mainly comes from the duration of the second 
section (cars 3.26 s, vans 4.86 s, trucks 7.02 s). In contrast, 
the first section shows smaller differences (cars 10.98 s, vans 
12.28 s, trucks 11.31 s). This indicates that, regardless of 
object class, the average waiting time for oncoming traffic 

Fig. 4   Number of U-turns per hour of the day

Table 1   Descriptive statistics of velocity for different object classes 
in m/s

Bold value represent the maximum values in each respective column

Object class vmin vmean vmed vmax vstd

Car 0.44 2.66 2.12 8.15 2.03
Van 0.34 2.44 2.05 7.61 1.81
Truck 0.71 2.69 2.44 6.87 1.45

Table 2   Descriptive statistics of acceleration for different object 
classes in m/s

Bold value represent the maximum values in each respective column

Object class amin amean amed amax astd

Car 0.00 0.69 0.48 2.71 0.65
Van 0.00 0.58 0.41 2.42 0.55
Truck 0.00 0.48 0.36 2.28 0.45
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before starting the U-turn is similar. Other notable differ-
ences include the heading (cars 10°, vans 11°, trucks 57°) 
and the distance to the reference line (cars 1.34 m, vans 
1.31 m, trucks 2.94 m) at the 1st VL. These values suggest 
that the U-turn maneuver of larger MRUs can be identified 
earlier.

As depicted in Fig. 5, a clear difference exists regard-
ing the distance to the reference line at the 2nd loop (also 
referred to as curve radius).

Figure 5 presents an analysis of the U-turn radius for the 
three different object classes. The data is visualized using 
violin plots, which illustrate the distribution, density, and 
spread of the U-turn radius within each object class. Key 
characteristics of the figure are: The U-turn radius for cars is 
concentrated around smaller values, with a median of 8.1 m. 
The distribution is relatively narrow, indicating low vari-
ability. Vans show a broader U-turn radius distribution, with 
the median of 9.7 m. The density extends towards higher 
values compared to cars, reflecting greater variability in 
maneuvering capabilities. Trucks exhibit the largest U-turn 
radius, with a median of 14.3 m and a wider range of values 

extending beyond 25 m. This indicates the limited maneu-
verability of trucks compared to the other two classes. The 
figure effectively highlights how the U-turn radius increases 
with vehicle size, emphasizing the influence of object class 
on maneuverability. Furthermore, the distribution of cars 
appears bimodal. Analysis of the video recordings suggests 
that the curve radius depends on the waiting position. Vehi-
cles waiting in the second position likely have a smaller 
curve radius as they do not move far into the intersection 
while waiting for oncoming traffic.

The data also shows that the mean heading increases pro-
gressively from loop to loop, supporting the assumption that 
the heading serves as an indicator of the progress of the 
U-turn. This interpretation becomes important when analyz-
ing parameter correlations. Out of all 400 possible pairwise 
correlations among the 20 parameters, based to the Pearson 
correlation coefficient, there are two strong, ten moderate, 
and 17 weak correlations.

The strongest correlation (Pearson correlation coefficient 
of 0.98) exists between the overall duration of the U-turn 
and the duration between the 1st and the 2nd VL. That indi-
cates that the time spent for waiting for oncoming traffic 
is the main factor for determining the total duration of the 
U-turning maneuver.

At the 1st VL (when entering the intersection), the dis-
tance to the reference line shows a weak positive correlation 
(0.41) with the heading at the 2nd VL and a weak negative 
correlation (-0.31) with the heading at the 3rd VL. This sug-
gests that a greater distance to the reference line at the 1st 
VL results in more of the turning maneuver is completed 
by the 2nd VL, and the less of the U-turn being performed 
between the 2nd and 3rd VLs.

The curve radius is the only parameter from the 2nd VL 
that exhibits at least moderate correlation with other param-
eters. Its positive correlation (0.78) with the heading at the 
3rd VL suggests that U-turns with a smaller curve radius 
complete less of the turning maneuver in the second sec-
tion. This is because the heading reflects the progress of the 
U-turn (see Fig. 6).

The positive correlation (0.57) between the curve radius 
and velocity at the 4th VL states that most U-turning vehi-
cles only begin to accelerate after entering the oncoming 
traffic, rather than decelerating at the VRU crossing. This 

Table 3   Mean values of 
parameters at VLs (cars, 
N = 3,663) 

Bold value represent the maximum values in each respective column

VL Heading [°] Velocity [m/s] Acceleration 
[m/s2]

Distance to the refer-
ence line [m]

Duration until 
next loop [s]

1st VL 10.26 3.73 0.64 1.34 10.97
2nd VL 60.09 2.90 1.14 9.19 3.26
3rd VL 186.12 5.17 1.45 5.03 1.18
4th VL 197.55 6.79 1.49 4.12 -

Fig. 5   Distribution of U-turn curve radius per object class
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could indicate that vehicles tend to prioritize entering the 
traffic smoothly, which is relevant for a realistic simulation 
of real-world traffic. This behavior emphasizes the impor-
tance of calibrating the vehicle's acceleration profile to 
ensure safe interaction with VRUs and to avoid unexpected 
vehicle behavior at critical points, such as crosswalks.

At the 3rd VL, the moderate positive correlations between 
velocity and acceleration (0.75) as well as velocity and curve 
radius (0.75) suggest that vehicles with a larger curve radius 
have more space to accelerate before crossing the 3rd VL. 
This finding is important from a safety perspective, because 
vehicles with higher velocities might be harder to control, 
particularly if they need to make tight U-turns.

Beyond this, there is a strong positive correlation (0.85) 
between the velocities at the 3rd and 4th VL (see Fig. 7). 
This correlation supports the observation that, in most sce-
narios, there is no interaction between U-turning vehicles 
and VRUs between these two loops. Therefore, vehicles 
often accelerate between those loops and have a slightly 
higher velocity at the 4th than at the 3rd loop.

There is also a positive correlation (0.70) between the 
acceleration at the 3rd VL and the velocity at the 4th VL. 
That shows that vehicles accelerating at the 3rd VL are faster 
at the consecutive loop.

Encounters with VRUs

If we define a PET below 5 s as indicating an encounter, our 
data set contains 48 encounters between the U-turning MRU 
and crossing VRU. That means an encounter with a VRU 

occurs approximately every 84th U-turn. This low frequency 
of encounters underscores that interactions between the two 
traffic participants are relatively rare. To further investigate 
the likelihood of these encounters resulting in critical inter-
actions, we will examine interactions by reducing the PET 
threshold in the following sections.

Moreover, encounters can be categorized based on the 
sign of the PET. When the PET is negative, the U-turning 
MRU reaches the conflict point first; conversely, when 
the PET is positive, the VRU arrives at the conflict point 
first. Figure 8 illustrates two screenshots extracted from an 
augmented scene video, depicting a scenario with a nega-
tive PET of − 1.96 s. The camera view shows the western 
pedestrian crossing from south to north, where vehicle C226 
performs a U-turn, crossing the pedestrian crossing after 
the pedestrian traffic light has turned green. The left frame 
captures the moment when the VRU traffic light switches 
to green (though not visible in the image), while the right 
frame, recorded 1.96 s later, shows bicyclist B595 crossing 
the trajectory of car C226.

Detection of Corner Cases

A threshold of an absolute PET value below 2 s is employed 
to identify the 15 interactions within the encounters. The 
relevant parameters of theses interactions are presented 
in Table 4, sorted in ascending order by the absolute PET 
value. The first three columns of the table display the inter-
action number and the identification numbers (IDs) of the 
road users involved, which serve as references for the inter-
actions. The last three numbers of the IDs are used as labels 

Fig. 6   Correlation between the curve radius and the heading at the 
3rd VL

Fig. 7   Correlation between the velocities of cars at the last two VLs
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for the road users in the augmented camera images shown in 
Figs. 8 and 9. The fourth column lists the PET values of the 
interactions, while the fifth column shows the correspond-
ing timestamp. The latter is given to illustrate the temporal 
distribution of situations with low PET values, emphasizing 
the need for several months of data recording to detect rare, 
critical situations. The sixth column indicates whether the 
interaction was classified as critical or non-critical. An inter-
action was classified as critical if any of the involved road 
users decelerated at a rate of at least 1 m/s2 for a minimum 

duration of 1 s. The results show that the four interactions 
classified as critical are not necessarily those with the lowest 
PET values. While the two interactions with the lowest abso-
lute PET values are indeed classified as critical, the third 
and fourth critical interactions correspond to the seventh 
and tenth lowest PET values. This discrepancy highlights a 
limitation of the PET method, as it does not fully capture the 
criticality of an interaction.

In Fig. 9, the most critical situation is depicted by the 
camera image from the timestamp in which bicyclist B521 

Fig. 8   Camera images of an interaction with negative PET. PET between car C226 and bicyclist B595 is -1.96 s

Table 4   Interactions with a PET 
between − 2 s and 2 s

Index U-turn ID VRU ID PET [s] Timestamp of PET Critical 
interac-
tion

1 7,519,108 29,059,521 0.44 13.08.2019 06:44:50 Yes
2 5,354,627 20,235,408 0.68 16.07.2019 12:35:02 Yes
3 6,602,732 25,414,577 0.68 01.08.2019 17:06:15 No
4 23,140,524 110,508,213 1.20 09.05.2019 05:27:09 No
5 18,566,115 88,527,303 1.24 12.03.2019 08:20:58 No
6 635,630 2,512,288 1.24 22.05.2019 10:10:26 No
7 7,133,672 27,495,266 1.32 08.08.2019 09:01:22 Yes
8 17,612,301 83,669,586 1.48 01.03.2019 06:22:09 No
9 3,804,977 14,512,859 1.64 28.06.2019 08:03:44 No
10 1,936,893 7,541,101 1.68 06.06.2019 13:15:51 Yes
11 99,064 410,348 − 1.72 03.09.2019 13:48:37 No
12 3,681,781 14,072,480 − 1.76 27.06.2019 05:28:30 No
13 6,270,371 24,155,905 1.76 29.07.2019 05:59:38 No
14 19,078,226 91,132,595 − 1.96 18.03.2019 07:45:47 No
15 2,279,112 8,852,732 1.96 11.06.2019 11:00:52 No
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leaves the conflict area. The PET between car C108 and 
bicyclist B521 is 0.44 s, and the vehicle has to brake up to 
3.2 m/s2 to avoid a collision.

Camera images of the other three critical situations are 
depicted in Figs. 11, 12 and 13 in the Appendix. Further 
analysis of the video recordings of the four critical situa-
tions reveals that these incidents occur, because the U-turn-
ing MRU exit the intersection after waiting a long time for 

oncoming traffic to pass. As a result, the vehicles involved 
in critical U-turns leave the intersection just as the traffic 
light for the VRUs switches from red to green. This timing 
issue is also indicated by the weak positive correlation (0.45) 
between U-turn duration and the PET, as depicted in Fig. 10.

Besides that, whereas the mean duration of all U-turns 
is 21 s, the mean duration of U-turns with VRU interac-
tion is 27 s. Thus, leaving the intersection at the end of the 
green light phase promotes criticality. The intersection is 
left at the end of the green light phase when traffic volume 
is increased. Therefore, our results obtained from real data 
support the results obtained in the simulation by Olarte et al. 
(2011) that the number of conflicts rises with the traffic vol-
ume. What distinguishes our work most significantly is the 
use of large-scale real-world trajectory data to model rare 
critical scenarios, such as illegal U-turns, which sets our 
methodology apart from prior research that has typically 
relied on smaller data sets or theoretical models.

Furthermore, the VRUs often only consider the traffic 
from east to west relevant for them and do not perceive 
the U-turning vehicle as an object relevant to them. This 
aligns with the observation made by Habibovic et al. (2013) 
in Japan, which found that incidents involving cars and 
pedestrians often occur due to drivers failing to recognize 
pedestrians or unexpected pedestrian behavior. In addition, 
sometimes, the VRU does not consider any traffic, focus-
ing solely on their traffic lights. Consequently, enhancing 
the awareness of MRUs regarding the traffic light status of 
VRUs through the utilization of hazard lights or vehicle-to-
infrastructure communication has the potential to mitigate 
criticality in this scenario.

Finally, the data from these critical scenarios and the 
behavior observed during U-turns can be integrated into a 
scenario database for scenario-based testing. This database 
can serve as a valuable tool for assessing the performance 
of automated systems in handling such interactions. Further 
details on how these data will be utilized in scenario-based 
testing are presented in Bahn et al. (2024).

Conclusion

This work focuses on processing a large data set of natu-
ralistic trajectories to demonstrate its application for sce-
nario-based testing. In this context, 4,051 illegal U-turn 
trajectories are filtered from over 9 million trajectories 
of the AIM Research Intersection. The digital map of the 
intersection was used to extract the kinematic parameters 
of the traffic participants and derive parameter distributions 
and correlations for the descriptive modelling of the U-turn 

Fig. 9   Camera image of the most critical situation in the western 
pedestrian crossing

Fig. 10   Correlation between PET and duration of the U-turn
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scenario. Furthermore, the study highlights differences 
between U-turn maneuvers of cars, vans, and trucks, and 
analyzes their interactions with VRUs. By computing the 
PET and filtering the results, 15 interactions between motor-
ized U-turning road users and crossing VRUs are identified. 
Video analysis, along with consideration of deceleration val-
ues, reveals four critical interactions all of which occur when 
the MRUs exit the intersection as the traffic light for VRUs 
changes from red to green. Proposed preventive measures 
such as hazard lights or vehicle-to-infrastructure commu-
nication could reduce criticality, because MRU would be 
informed of the VRU traffic light status.

This study addresses the research gap in understanding 
rare, critical scenarios such as illegal U-turns by utilizing a 
large real-world data set and applying scenario-based test-
ing methods. The analysis of real-world data from these 
illegal scenarios lays the groundwork for future research 
aimed at developing strategies to enhance the resilience 
of automated driving systems in scenarios involving traf-
fic rule violations by other participants. It is essential to 
emphasize that the instances of extracted illegal U-turns 
serve merely as one among numerous potential scenarios 
encapsulating the spectrum of illegal behaviors exhib-
ited by road users, and thus constitute a fraction of the 
scenarios encompassed within a comprehensive scenario 
database. Nevertheless, the findings of this work demon-
strate how data science can be applied in scenario-based 
testing to evaluate large data sets. Even rare scenarios can 
be identified and analyzed within a large data set. Another 
limitation of this study includes the specific focus on one 
intersection and the reliance on trajectory data that may be 
subject to inaccuracies. These limitations suggest that the 
results may not fully generalize to all urban intersections 
or traffic conditions.

According to the findings, waiting a long time at the inter-
section can create atypical situations and increase criticality. 
Therefore, follow-up work will look closely at other situa-
tions, where vehicles stay atypically long inside the intersec-
tion. To enhance the outcomes of this study, future work will 
assess whether other SSMs can better capture the level of 
criticality in the current scenario compared to PET. Further 
work will also focus on a generalization of the methodology 
so that parameter distributions of U-turns from other inter-
sections can be identified based on an OpenDRIVE map.

Appendix

See Figs. 11, 12 and 13.

Fig. 11   Camera image of the second most critical situation. PET 
between car C627 and bicyclist B408 is 0.68 s

Fig. 12   Camera image of the third most critical situation. PET 
between car C627 and bicyclist B266 is 1.32 s
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