elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Characterisation of a 10-Layer SOC Stack Under Pressurised CO2 Electrolysis Operation

Groß, Maximilian und Sedeqi, Faisal und Amaya-Dueñas, Diana-María und Heddrich, Marc P. und Ansar, Syed Asif (2022) Characterisation of a 10-Layer SOC Stack Under Pressurised CO2 Electrolysis Operation. 242nd ECS Meeting, 09.-13. Okt. 2022, Atlanta, USA. doi: 10.1149/MA2022-02491950mtgabs.

Dies ist die aktuellste Version dieses Eintrags.

[img] PDF
103kB

Kurzfassung

One promising way of facing recent challenges to slow down the climate crisis or to reduce dependencies on fossil energy sources, e.g. natural gas, is using renewable methane and other e-fuels for storage and distribution via existing infrastructure. Solid oxide cell (SOC) reactors play an important role in the conversion of sustainable electric power into chemicals as they can be obtained from combined steam and CO2 co-electrolysis for syngas production. The pressurised electrolysis operation is a key factor for increasing the system efficiency of PtX-processes, including balance-of-plant (BoP) components, electrochemical reactors and high pressure downstream processes. In general, the yield of CO2 electrochemical reduction at atmospheric and pressurised conditions in high temperature co-electrolysis is still controversially discussed. Previously, several SOC short stacks were thoroughly analysed in pressurised steam- and co-electrolysis operation in a test-rig environment. These experimental results indicate marginal influence of pressure on the performance of electrolyte supported cells (ESC). In contrast, electrochemical impedance spectroscopy (EIS) suggests that pressurisation of pure CO2 electrolysis significantly reduces the fuel electrode impedance contribution, especially at lower temperatures around 700 °C [1,2]. This work aims to experimentally determine the kinetic behaviour of pure CO2 electrolysis by varying operating conditions like pressure, temperature, reactant conversion and feed gas composition. The investigation of kinetic parameters during these experiments could complement the formerly described research. Furthermore, the kinetic expressions can be used when studying co-electrolysis operation to identify the shares of: (i) the reverse water-gas-shift (rWGS) and (ii) the CO2 electrochemical reduction. Polarisation curves were dynamically recorded and different current densities were evaluated in steady-state operation. Additionally, EIS measurements were performed at open circuit voltage (OCV), as well as under different current densities. The kinetic parameters were estimated by curve-fitting analysis of the experimental results. The resulting expressions will be implemented in the in-house modelling framework, TEMPEST, based on [3,4] with the aim to increase the accuracy of modelling high-temperature CO2 electrolysis and co-electrolysis systems. [1] Riedel, M., Heddrich, M. P., & Friedrich, K. A. (2020). Experimental Analysis of the Co-Electrolysis Operation under Pressurized Conditions with a 10 Layer SOC Stack. Journal of The Electrochemical Society, 167(2), 024504, DOI: 10.1149/1945-7111/ab6820. [2] Riedel, M. (2020, October 20–23). Experimental analysis of SOE stacks under pressurized co- and CO2 electrolysis operation [Paper presentation]. 14th European SOFC & SOE Forum, Lucerne, Switzerland. [3] Tomberg, M., Santhanam, S., Heddrich, M. P., Ansar, A., & Friedrich, K. A. (2019). Transient Modelling of Solid Oxide Cell Modules and 50 kW Experimental Validation. ECS Transactions, 91(1), 2089, DOI: 10.1149/09101.2089ecst. [4] Srikanth, S., Heddrich, M. P., Gupta, S., & Friedrich, K. A. (2018). Transient reversiblesolid oxide cell reactor operation–Experimentally validated modeling and analysis. Applied Energy, 232, 473-488, DOI: 10.1016/j.apenergy.2018.09.186.

elib-URL des Eintrags:https://elib.dlr.de/193148/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Characterisation of a 10-Layer SOC Stack Under Pressurised CO2 Electrolysis Operation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Groß, MaximilianMaximilian.Gross (at) dlr.dehttps://orcid.org/0000-0001-6030-7141NICHT SPEZIFIZIERT
Sedeqi, FaisalFaisal.Sedeqi (at) dlr.dehttps://orcid.org/0000-0003-2883-6494NICHT SPEZIFIZIERT
Amaya-Dueñas, Diana-MaríaDiana.AmayaDuenas (at) dlr.dehttps://orcid.org/0000-0002-4188-0062NICHT SPEZIFIZIERT
Heddrich, Marc P.Marc.Heddrich (at) dlr.dehttps://orcid.org/0000-0002-7037-0870NICHT SPEZIFIZIERT
Ansar, Syed AsifSyed-Asif.Ansar (at) dlr.dehttps://orcid.org/0000-0001-6300-0313NICHT SPEZIFIZIERT
Datum:2022
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:MA2022
DOI:10.1149/MA2022-02491950mtgabs
Seitenbereich:Seite 1950
Name der Reihe:ECS Meeting Abstracts
Status:veröffentlicht
Stichwörter:Solid Oxide Cell Stack, CO2 Elektrolyse, Druckelektrolyse
Veranstaltungstitel:242nd ECS Meeting
Veranstaltungsort:Atlanta, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:09.-13. Okt. 2022
Veranstalter :ECS - The Electrochemical Society
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Energiesystemintegration
Hinterlegt von: Groß, Maximilian
Hinterlegt am:16 Jan 2023 18:14
Letzte Änderung:16 Jan 2023 18:14

Verfügbare Versionen dieses Eintrags

  • Characterisation of a 10-Layer SOC Stack Under Pressurised CO2 Electrolysis Operation. (deposited 16 Jan 2023 18:14) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.