elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Analytical distribution function of relaxation times for porous electrodes and analysis of the distribu-tions of time constants

Heim, Christopher und Wagner, Norbert und Friedrich, Kaspar Andreas (2022) Analytical distribution function of relaxation times for porous electrodes and analysis of the distribu-tions of time constants. Solid State Ionics, 383, Seiten 115960-115981. Elsevier. doi: 10.1016/j.ssi.2022.115960. ISSN 0167-2738.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
7MB

Kurzfassung

Based on the work by Boukamp (Boukamp, 2017), the method of Fuoss and Kirkwood (Fuoss and Kirkwood, 1941) is applied to derive an analytical distribution function of relaxation times for physics based porous electrode impedance cases. These impedance models are typically described by transcendental transfer functions. The porous electrode impedance treated here reflects a balance of the effective ionic and electronic impedances inside a porous electrode consisting of particles. Therefore, first the DFRT of the single particle interface impedance is derived. This includes treatment of charge transfer, double layer charging, solid state diffusion inside the particles, open-circuit voltage variations due to solid-state concentration, and insulating layers surrounding the particles. The resulting single particle DFRT relations are then incorporated into a mathematical description of the porous electrode DFRT. The results show that the DFRT of the porous electrode can be clearly separated into distributions of time constants corresponding to charge transfer, solid state diffusion and in case of intercalating particles, like in lithium-ion batteries, a third distribution of time constants is identified. A novelty of this work is the explicit treatment of the low-frequency capacitance and the resulting distribution of time constants in porous electrode systems. Analytical relations for the individual time constants are derived and reported. Since the ideal distribution of time constants can be represented by a series of R||C circuit elements, validation is performed by reconstruction of the impedance spectra, based on the analytical results.

elib-URL des Eintrags:https://elib.dlr.de/193036/
Dokumentart:Zeitschriftenbeitrag
Titel:Analytical distribution function of relaxation times for porous electrodes and analysis of the distribu-tions of time constants
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Heim, ChristopherChristopher.Heim (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wagner, NorbertNorbert.Wagner (at) dlr.dehttps://orcid.org/0000-0002-2596-8689NICHT SPEZIFIZIERT
Friedrich, Kaspar AndreasAndreas.Friedrich (at) dlr.dehttps://orcid.org/0000-0002-2968-5029NICHT SPEZIFIZIERT
Datum:Mai 2022
Erschienen in:Solid State Ionics
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:383
DOI:10.1016/j.ssi.2022.115960
Seitenbereich:Seiten 115960-115981
Verlag:Elsevier
ISSN:0167-2738
Status:veröffentlicht
Stichwörter:Impedance spectroscopy Distribution function of relaxation times Spherical diffusion impedance Lithium-ion battery Porous electrode impedance Diffusion impedance
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Elektrochemische Energietechnik
Hinterlegt von: Friedrich, Prof.Dr. Kaspar Andreas
Hinterlegt am:12 Jan 2023 19:50
Letzte Änderung:13 Jan 2023 14:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.