Adachi, Masaki and Kuhn, Yannick and Horstmann, Birger and Latz, Arnulf and Osborne, Michael A. and Howey, David A. (2023) Bayesian Model Selection of Lithium-Ion Battery Models via Bayesian Quadrature. In: IFAC World Congress 2023, pp. 10521-10526. Elsevier. IFAC World Congress 2023, 2023-07-09 - 2023-07-14, Yokohama, Japan. doi: 10.1016/j.ifacol.2023.10.1073. (Submitted)
PDF
- Only accessible within DLR
1MB |
Official URL: https://arxiv.org/abs/2210.17299
Abstract
A wide variety of battery models are available, and it is not always obvious which model `best' describes a dataset. This paper presents a Bayesian model selection approach using Bayesian quadrature. The model evidence is adopted as the selection metric, choosing the simplest model that describes the data, in the spirit of Occam's razor. However, estimating this requires integral computations over parameter space, which is usually prohibitively expensive. Bayesian quadrature offers sample-efficient integration via model-based inference that minimises the number of battery model evaluations. The posterior distribution of model parameters can also be inferred as a byproduct without further computation. Here, the simplest lithium-ion battery models, equivalent circuit models, were used to analyse the sensitivity of the selection criterion to given different datasets and model configurations. We show that popular model selection criteria, such as root-mean-square error and Bayesian information criterion, can fail to select a parsimonious model in the case of a multimodal posterior. The model evidence can spot the optimal model in such cases, simultaneously providing the variance of the evidence inference itself as an indication of confidence. We also show that Bayesian quadrature can compute the evidence faster than popular Monte Carlo based solvers.
Item URL in elib: | https://elib.dlr.de/192920/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||||||||||
Title: | Bayesian Model Selection of Lithium-Ion Battery Models via Bayesian Quadrature | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IFAC World Congress 2023 | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.ifacol.2023.10.1073 | ||||||||||||||||||||||||||||
Page Range: | pp. 10521-10526 | ||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||
Series Name: | IFAC-PapersOnLine | ||||||||||||||||||||||||||||
Status: | Submitted | ||||||||||||||||||||||||||||
Keywords: | Methodology (stat.ME), Machine Learning (cs.LG), Systems and Control (eess.SY), Chemical Physics (physics.chem-ph), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, FOS: Physical sciences, 62C10, 62F15 | ||||||||||||||||||||||||||||
Event Title: | IFAC World Congress 2023 | ||||||||||||||||||||||||||||
Event Location: | Yokohama, Japan | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 9 July 2023 | ||||||||||||||||||||||||||||
Event End Date: | 14 July 2023 | ||||||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||||||
HGF - Program: | Materials and Technologies for the Energy Transition | ||||||||||||||||||||||||||||
HGF - Program Themes: | Electrochemical Energy Storage | ||||||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||||||
DLR - Program: | E SP - Energy Storage | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | E - Electrochemical Storage, E - Electrochemical Processes | ||||||||||||||||||||||||||||
Location: | Ulm | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Engineering Thermodynamics > Computational Electrochemistry | ||||||||||||||||||||||||||||
Deposited By: | Kuhn, Yannick | ||||||||||||||||||||||||||||
Deposited On: | 05 Jan 2023 15:09 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page