Adachi, Masaki und Kuhn, Yannick und Horstmann, Birger und Latz, Arnulf und Osborne, Michael A. und Howey, David A. (2023) Bayesian Model Selection of Lithium-Ion Battery Models via Bayesian Quadrature. In: IFAC World Congress 2023, Seiten 10521-10526. Elsevier. IFAC World Congress 2023, 2023-07-09 - 2023-07-14, Yokohama, Japan. doi: 10.1016/j.ifacol.2023.10.1073. (eingereichter Beitrag)
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://arxiv.org/abs/2210.17299
Kurzfassung
A wide variety of battery models are available, and it is not always obvious which model `best' describes a dataset. This paper presents a Bayesian model selection approach using Bayesian quadrature. The model evidence is adopted as the selection metric, choosing the simplest model that describes the data, in the spirit of Occam's razor. However, estimating this requires integral computations over parameter space, which is usually prohibitively expensive. Bayesian quadrature offers sample-efficient integration via model-based inference that minimises the number of battery model evaluations. The posterior distribution of model parameters can also be inferred as a byproduct without further computation. Here, the simplest lithium-ion battery models, equivalent circuit models, were used to analyse the sensitivity of the selection criterion to given different datasets and model configurations. We show that popular model selection criteria, such as root-mean-square error and Bayesian information criterion, can fail to select a parsimonious model in the case of a multimodal posterior. The model evidence can spot the optimal model in such cases, simultaneously providing the variance of the evidence inference itself as an indication of confidence. We also show that Bayesian quadrature can compute the evidence faster than popular Monte Carlo based solvers.
elib-URL des Eintrags: | https://elib.dlr.de/192920/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||||||||||
Titel: | Bayesian Model Selection of Lithium-Ion Battery Models via Bayesian Quadrature | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||||||
Erschienen in: | IFAC World Congress 2023 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.ifacol.2023.10.1073 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 10521-10526 | ||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||
Name der Reihe: | IFAC-PapersOnLine | ||||||||||||||||||||||||||||
Status: | eingereichter Beitrag | ||||||||||||||||||||||||||||
Stichwörter: | Methodology (stat.ME), Machine Learning (cs.LG), Systems and Control (eess.SY), Chemical Physics (physics.chem-ph), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, FOS: Physical sciences, 62C10, 62F15 | ||||||||||||||||||||||||||||
Veranstaltungstitel: | IFAC World Congress 2023 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 9 Juli 2023 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 14 Juli 2023 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||||||
HGF - Programmthema: | Elektrochemische Energiespeicherung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SP - Energiespeicher | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Elektrochemische Speicher, E - Elektrochemische Prozesse | ||||||||||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Computergestützte Elektrochemie | ||||||||||||||||||||||||||||
Hinterlegt von: | Kuhn, Yannick | ||||||||||||||||||||||||||||
Hinterlegt am: | 05 Jan 2023 15:09 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags