elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Estimation of Earth rotation parameters from Lunar Laser Ranging data

Biskupek, Liliane and Singh, Vishwa Vijay and Müller, Jürgen and Zhang, Mingyue (2022) Estimation of Earth rotation parameters from Lunar Laser Ranging data. EGU General Assembly, 2022-05-23 - 2022-05-27, Wien, Österreich. doi: 10.5194/egusphere-egu22-3377.

Full text not available from this repository.

Official URL: https://meetingorganizer.copernicus.org/EGU22/EGU22-3377.html

Abstract

In addition to Very Long Baseline Interferometry (VLBI) the Earth rotation phase ∆UT1 can also be determined directly from Lunar Laser Ranging (LLR) data. With the other Earth Orientation Parameters (EOP) like terrestrial pole coordinates and nutation parameters, the determination of a full set of EOP is possible from LLR observations. In recent years LLR observations have been carried out with bigger telescopes (APOLLO) and at infrared wavelength (OCA, Wettzell). This resulted in a better distribution of LLR data over the lunar orbit and retro-reflectors with a higher accuracy. The aim of our recent study is to quantify, how much the EOP determination can be improved with the new high-accurate LLR data compared to previous years and if it can then be used to validate VLBI results. First, we focus on estimating deltaUT1 and terrestrial pole coordinates from different constellations such as single or multi-station data and for a different number of normal points per night. The accuracies of the results determined from the new LLR data (after 2000.0) have significantly improved, being less than 20 µs for deltaUT1, less than 2.5 mas for xp, and less than 3 mas for yp for nights selected from subsets of the LLR time series which have 10 and 15 normal points obtained per night. Second, we focus on the determination of corrections of the nutation coefficients to the MHB2000 model of the IERS Conventions 2010. Here we also see significant smaller correction values and accuracies with an improvement of one order of magnitude, that means accuracies better then 0.01 mas. Recent results will be presented and discussed.

Item URL in elib:https://elib.dlr.de/192789/
Document Type:Conference or Workshop Item (Speech)
Title:Estimation of Earth rotation parameters from Lunar Laser Ranging data
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Biskupek, LilianeLeibniz Universität Hannoverhttps://orcid.org/0000-0002-4204-6838UNSPECIFIED
Singh, Vishwa VijayInstitut für Erdmessung, Leibniz Universität Hannover, Germanyhttps://orcid.org/0000-0003-2973-2435UNSPECIFIED
Müller, JürgenInstitut für Erdmessung, Leibniz Universität Hannover, Germanyhttps://orcid.org/0000-0003-1247-9525UNSPECIFIED
Zhang, MingyueInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-2198-1747UNSPECIFIED
Date:2022
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI:10.5194/egusphere-egu22-3377
Status:Published
Keywords:LLR, VLBI, Erdorientierungsparameter
Event Title:EGU General Assembly
Event Location:Wien, Österreich
Event Type:international Conference
Event Start Date:23 May 2022
Event End Date:27 May 2022
Organizer:European Geosciences Union
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Communication, Navigation, Quantum Technology
DLR - Research area:Raumfahrt
DLR - Program:R KNQ - Communication, Navigation, Quantum Technology
DLR - Research theme (Project):R - Lunar Laser Ranging
Location: Hannover
Institutes and Institutions:Institute for Satellite Geodesy and Inertial Sensing > Satellite Geodesy and Geodetic Modelling
Deposited By: Schilling, Manuel
Deposited On:06 Jan 2023 08:24
Last Modified:24 Apr 2024 20:53

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.