elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial Video Classification

Jin, Pu und Mou, LiChao und Hua, Yuansheng und Xia, Gui-Song und Zhu, Xiao Xiang (2022) FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial Video Classification. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5618913. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3150917. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://ieeexplore.ieee.org/document/9709809

Kurzfassung

Unmanned aerial vehicles (UAVs) are now widely applied to data acquisition due to its low cost and fast mobility. With the increasing volume of aerial videos, the demand for automatically parsing these videos is surging. To achieve this, current research mainly focuses on extracting a holistic feature with convolutions along both spatial and temporal dimensions. However, these methods are limited by small temporal receptive fields and cannot adequately capture long-term temporal dependencies that are important for describing complicated dynamics. In this article, we propose a novel deep neural network, termed Fusing Temporal relations and Holistic features for aerial video classification (FuTH-Net), to model not only holistic features but also temporal relations for aerial video classification. Furthermore, the holistic features are refined by the multiscale temporal relations in a novel fusion module for yielding more discriminative video representations. More specially, FuTH-Net employs a two-pathway architecture: 1) a holistic representation pathway to learn a general feature of both frame appearances and short-term temporal variations and 2) a temporal relation pathway to capture multiscale temporal relations across arbitrary frames, providing long-term temporal dependencies. Afterward, a novel fusion module is proposed to spatiotemporally integrate the two features learned from the two pathways. Our model is evaluated on two aerial video classification datasets, ERA and Drone-Action, and achieves the state-of-the-art results. This demonstrates its effectiveness and good generalization capacity across different recognition tasks (event classification and human action recognition). To facilitate further research, we release the code at https://gitlab.lrz.de/ai4eo/reasoning/futh-net .

elib-URL des Eintrags:https://elib.dlr.de/192765/
Dokumentart:Zeitschriftenbeitrag
Titel:FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial Video Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jin, Pupu.jin (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.dehttps://orcid.org/0000-0001-8407-6413NICHT SPEZIFIZIERT
Hua, YuanshengYuansheng.Hua (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xia, Gui-Songguisong.xia (at) whu.edu.cnNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2022.3150917
Seitenbereich:Seite 5618913
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Aerial video classification, convolutional neural networks (CNNs), holistic features, temporal relations, two-pathway, unmanned aerial vehicle (UAV)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Haschberger, Dr.-Ing. Peter
Hinterlegt am:22 Dez 2022 09:06
Letzte Änderung:30 Jan 2024 11:10

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.