Chen, Yaxiong und Xiong, Shengwu und Mou, LiChao und Zhu, Xiao Xiang (2022) Deep Quadruple-Based Hashing for Remote Sensing Image-Sound Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 4705814. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3155283. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9722869
Kurzfassung
With the rapid progress of earth observation technology, cross-modal remote sensing (RS) image-sound retrieval has attracted much attention from the field of RS data processing. Existing approaches usually learn the pairwise similarity relations between RS images and sounds. However, these approaches ignore relative semantic similarity relationships, which leads to poor performance of cross-modal RS image-sound retrieval. In this article, we address this dilemma with a novel deep quadruple-based hashing (DQH) approach. We first devise a novel quadruple-based hashing network to learn relative semantic similarity relationships of hash codes. Meanwhile, we propose a quadruple construction hard module, which randomly selects two triplet hard units to directly learn relative semantic similarity relationships. On top of the two paths, we develop a new objective function to perform effective hash codes learning. The new objective function not only captures the relative semantic correlation of hash codes across different modalities and learns the relative semantic correlation of deep features but also enhances category-level semantics of hash codes and reduces the quantization error between hash-like codes and hash codes. The reasonableness and effectiveness of the proposed architecture are well illustrated by comprehensive experiments on diverse RS image-sound datasets.
elib-URL des Eintrags: | https://elib.dlr.de/192763/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Deep Quadruple-Based Hashing for Remote Sensing Image-Sound Retrieval | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Februar 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3155283 | ||||||||||||||||||||
Seitenbereich: | Seite 4705814 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Category-level semantics, hash codes, quantization error, relative semantic similarity | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 22 Dez 2022 09:05 | ||||||||||||||||||||
Letzte Änderung: | 22 Dez 2022 09:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags