Saha, Sudipan und Zhao, Shan und Zhu, Xiao Xiang (2022) Multitarget Domain Adaptation for Remote Sensing Classification Using Graph Neural Network. IEEE Geoscience and Remote Sensing Letters, 19, Seite 6506505. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2022.3149950. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
742kB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9706461
Kurzfassung
Remote sensing deals with huge variations in geography, acquisition season, and a plethora of sensors. Considering the difficulty of collecting labeled data uniformly representing all scenarios, data-hungry deep learning models are oftentrained with labeled data in a source domain that is limited in the above-mentioned aspects. Domain adaptation (DA) methods can adapt such model for applying on target domains with different distributions from the source domain. However, most remote sensing DA methods are designed for single-target, thus requiring a separate target classifier to be trained for each target domain. To mitigate this, we propose multitarget DA in which a single classifier is learned for multiple unlabeled target domains. To build a multitarget classifier, it may be beneficial to effectively aggregate features from the labeled source and different unlabeled target domains. Toward this, we exploit coteaching based on the graph neural network that is capable of leveraging unlabeled data. We use a sequential adaptation strategy that first adapts on the easier target domains assuming that the network finds it easier to adapt to the closest target domain. We validate the proposed method on two different datasets, representing geographical and seasonal variation. Code is available at https://gitlab.lrz.de/ai4eo/da-multitarget-gnn/.
elib-URL des Eintrags: | https://elib.dlr.de/192761/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Multitarget Domain Adaptation for Remote Sensing Classification Using Graph Neural Network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Februar 2022 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 19 | ||||||||||||||||
DOI: | 10.1109/LGRS.2022.3149950 | ||||||||||||||||
Seitenbereich: | Seite 6506505 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Coteaching, domain adaptation (DA), graph neural network (GNN), multimodal learning, multitarget adaptation | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 22 Dez 2022 09:04 | ||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags