elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Revealing Venus Interior from Coronae Analysis

De Toffoli, B. and Mazzarini, F. and Plesa, Ana-Catalina and Vaujour, Thomas and Breuer, Doris and Hauber, Ernst (2022) Revealing Venus Interior from Coronae Analysis. European Geosciences Union General Assembly, 2022-05-23 - 2022-05-27, Vienna, Austria. doi: 10.5194/egusphere-egu22-954.

Full text not available from this repository.

Official URL: https://meetingorganizer.copernicus.org/EGU22/EGU22-954.html

Abstract

Rifting and rises are prominent landscape features in the roughly triangular area characterized by the presence of three major rises (Atla, Beta and Themis) and two corona-dominated long chasmata (Hecate and Parga). The coronae population associated with these chasmata represents 35% of all Venusian coronae and 56% of coronae associated with fracture zones (Smrekar et al., 2010). We focused on the spatial analysis of the coronae population associated with Parga chasma for identifying the depth of the main thermal anomaly that fed (and maybe still feeds) them. We explore a formation mechanism for coronae based on the Rayleigh–Taylor (R-T) gravitational instability (Tackley and Stevenson, 1991) of the lithosphere that may occur when a layer of dense fluid overlies a layer of less dense fluid. The R-T gravitational instability theory can be used to draw a relationship between the spacing of volcanic structures and edifices at the surface and the depth of the source of instability beneath the volcanic fields (i.e. the lithosphere-asthenosphere boundary depth where partial melting is initiated and starts the vertical upwelling of material). We performed the analyses both on the entire population and on two sub-groups obtained from automatic clustering based on point spacing analysis. Overall, the results obtained from the analysis of the entire population can be considered a global average while the information extracted from the analyses of the two clusters are to be interpreted as end members. Hence, the lithosphere-asthenosphere boundary depth results to be located at 117 ± 10 km underneath Parga. Additionally, we ran geodynamical models using a variable thermal conductivity and expansivity, and reference viscosities between 1e20 and 1e22 Pa s. These models use an extrusive to intrusive magmatism ratio of 0.1, a typical terrestrial value (Crisp et al., 1984). The intrusive melt is assumed to stall at the base of the crust (~20 km depth; James et al., 2013), since the latter represents a density barrier. According to these models, a mantle reference viscosity of 1e20 Pa s is best compatible with the geologically inferred lithosphere thickness as well as a thin mechanical thickness as suggested by elastic thickness estimates (e.g., O’Rourke & Smrekar 2018). As future missions will return higher resolution imagery and topographical information, we suggest the area of Parga chasma as a region of high interest for future data acquisitions. In fact, more detailed data can allow the observation of stratigraphic relationships between rises, rifts, coronae, and volcanoes in order to reconstruct the event sequences. By means of R-T analysis and similar techniques, we would thus be able to refine current analyses and perform more detailed estimates from smaller volcanic features and obtain more precise information about magma reservoir distribution in the subsurface.

Item URL in elib:https://elib.dlr.de/192639/
Document Type:Conference or Workshop Item (Speech)
Title:Revealing Venus Interior from Coronae Analysis
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
De Toffoli, B.UNSPECIFIEDhttps://orcid.org/0000-0002-3106-5689UNSPECIFIED
Mazzarini, F.Istituto Nazionale di Geofisica e VulcanologiaUNSPECIFIEDUNSPECIFIED
Plesa, Ana-CatalinaUNSPECIFIEDhttps://orcid.org/0000-0003-3366-7621UNSPECIFIED
Vaujour, ThomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Breuer, DorisUNSPECIFIEDhttps://orcid.org/0000-0001-9019-5304UNSPECIFIED
Hauber, ErnstUNSPECIFIEDhttps://orcid.org/0000-0002-1375-304XUNSPECIFIED
Date:2022
Refereed publication:No
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI:10.5194/egusphere-egu22-954
Status:Published
Keywords:Venus, Coronae, Lithosphere, Mantle viscosity
Event Title:European Geosciences Union General Assembly
Event Location:Vienna, Austria
Event Type:international Conference
Event Start Date:23 May 2022
Event End Date:27 May 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Exploration
DLR - Research area:Raumfahrt
DLR - Program:R EW - Space Exploration
DLR - Research theme (Project):R - Exploration of the Solar System
Location: Berlin-Adlershof
Institutes and Institutions:Institute of Planetary Research > Planetary Physics
Institute of Planetary Research > Planetary Geology
Deposited By: Plesa, Dr. Ana-Catalina
Deposited On:20 Dec 2022 09:55
Last Modified:24 Apr 2024 20:53

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.