Xie, Yuxing and Tian, Jiaojiao and Zhu, Xiao Xiang (2023) A Co-learning Method to Utilize Optical Images and Photogrammetric Point Clouds for Building Extraction. International Journal of Applied Earth Observation and Geoinformation, 116, p. 103165. Elsevier. doi: 10.1016/j.jag.2022.103165. ISSN 1569-8432.
![]() |
PDF
- Published version
8MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S1569843222003533
Abstract
Although deep learning techniques have brought unprecedented accuracy to automatic building extraction, several main issues still constitute an obstacle to effective and practical applications. The industry is eager for higher accuracy and more flexible data usage. In this paper, we present a co-learning framework applicable to building extraction from optical images and photogrammetric point clouds, which can take the advantage of 2D/3D multimodality data. Instead of direct information fusion, our co-learning framework adaptively exploits knowledge from another modality during the training phase with a soft connection, via a predefined loss function. Compared to conventional data fusion, this method is more flexible, as it is not mandatory to provide multimodality data in the test phase. We propose two types of co-learning: a standard version and an enhanced version, depending on whether unlabeled training data are employed. Experimental results from two data sets show that the methods we present can enhance the performance of both image and point cloud networks in few-shot tasks, as well as image networks when applying fully labeled training data sets.
Item URL in elib: | https://elib.dlr.de/192609/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | A Co-learning Method to Utilize Optical Images and Photogrammetric Point Clouds for Building Extraction | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | February 2023 | ||||||||||||||||
Journal or Publication Title: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 116 | ||||||||||||||||
DOI: | 10.1016/j.jag.2022.103165 | ||||||||||||||||
Page Range: | p. 103165 | ||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||
ISSN: | 1569-8432 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | building extraction; co-learning; multimodality learning; multispectral images; point clouds; remote sensing | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||
Deposited By: | Xie, Yuxing | ||||||||||||||||
Deposited On: | 05 Jan 2023 08:43 | ||||||||||||||||
Last Modified: | 19 Oct 2023 10:10 |
Repository Staff Only: item control page