Xie, Yuxing und Tian, Jiaojiao und Zhu, Xiao Xiang (2023) A Co-learning Method to Utilize Optical Images and Photogrammetric Point Clouds for Building Extraction. International Journal of Applied Earth Observation and Geoinformation, 116, Seite 103165. Elsevier. doi: 10.1016/j.jag.2022.103165. ISSN 1569-8432.
PDF
- Verlagsversion (veröffentlichte Fassung)
8MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1569843222003533
Kurzfassung
Although deep learning techniques have brought unprecedented accuracy to automatic building extraction, several main issues still constitute an obstacle to effective and practical applications. The industry is eager for higher accuracy and more flexible data usage. In this paper, we present a co-learning framework applicable to building extraction from optical images and photogrammetric point clouds, which can take the advantage of 2D/3D multimodality data. Instead of direct information fusion, our co-learning framework adaptively exploits knowledge from another modality during the training phase with a soft connection, via a predefined loss function. Compared to conventional data fusion, this method is more flexible, as it is not mandatory to provide multimodality data in the test phase. We propose two types of co-learning: a standard version and an enhanced version, depending on whether unlabeled training data are employed. Experimental results from two data sets show that the methods we present can enhance the performance of both image and point cloud networks in few-shot tasks, as well as image networks when applying fully labeled training data sets.
elib-URL des Eintrags: | https://elib.dlr.de/192609/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A Co-learning Method to Utilize Optical Images and Photogrammetric Point Clouds for Building Extraction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Februar 2023 | ||||||||||||||||
Erschienen in: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 116 | ||||||||||||||||
DOI: | 10.1016/j.jag.2022.103165 | ||||||||||||||||
Seitenbereich: | Seite 103165 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 1569-8432 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | building extraction; co-learning; multimodality learning; multispectral images; point clouds; remote sensing | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Xie, Yuxing | ||||||||||||||||
Hinterlegt am: | 05 Jan 2023 08:43 | ||||||||||||||||
Letzte Änderung: | 12 Jan 2024 09:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags