elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting high-dimensional heterogeneous time series employing generalized local states

Räth, Christoph und Baur, Sebastian (2022) Predicting high-dimensional heterogeneous time series employing generalized local states. Dynamics Days Europe 2022, 2022-08-22 - 2022-08-26, Aberdeen, Schottland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Tremendous advances in predicting the behavior of complex systems have been made in recent years by applying machine learning. For high-dimensional systems, these machine learning methods often suffer from the curse of dimensionality meaning that the number of nodes of the network has to be considerably larger than the dimensionality of the input data rendering the training unfeasible with a naive approach. With a parallel prediction scheme based on local states (LS), however, the forecasting of high-dimensional chaotic spatiotemporal systems of arbitrarily large extent becomes possible. The definition of LS relies on defining spatial local neighborhoods, thus the knowledge of the position of the time series in space is a necessary prerequisite for defining LS. Yet, the similarity of time series can also be defined in a much more general way by deducing a distance measure and thus a local neighborhood from the correlations among the time series. We employ this approach to define generalized local states (GLS) for the prediction of high-dimensional systems with which some of the shortcomings of the LS approach can be overcome. First, GLS can make excellent predictions in the case of mixed systems, where LS are doomed to fail. In our examples GLS is even able to infer the different origins of a set of heterogeneous time series, for which the generating processes are unknown. Second, prediction of high-dimensional systems remains feasible when no spatial information is available. This is more and more the typical case in real world applications, when analyzing such heterogeneous data sets like remote sensing data, financial data, social media data, etc.

elib-URL des Eintrags:https://elib.dlr.de/192502/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Predicting high-dimensional heterogeneous time series employing generalized local states
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Räth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baur, SebastianSebastian.Baur (at) dlr.dehttps://orcid.org/0000-0003-1924-8009NICHT SPEZIFIZIERT
Datum:22 August 2022
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Reservoir Computing, Machine Learning, Neural Networks, Time Series, Local States, Chaos, Dynamics of networks, Spatiotemporal chaos, Chaotic systems, Dynamical systems, High dimensional systems, Machine learning, Time series analysis, Nonlinear Dynamics
Veranstaltungstitel:Dynamics Days Europe 2022
Veranstaltungsort:Aberdeen, Schottland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:22 August 2022
Veranstaltungsende:26 August 2022
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA, D - Kurzstudien [KIZ]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Baur, Sebastian
Hinterlegt am:13 Jan 2023 10:31
Letzte Änderung:24 Apr 2024 20:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.