Räth, Christoph und Baur, Sebastian (2022) Predicting high-dimensional heterogeneous time series employing generalized local states. Dynamics Days Europe 2022, 2022-08-22 - 2022-08-26, Aberdeen, Schottland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Tremendous advances in predicting the behavior of complex systems have been made in recent years by applying machine learning. For high-dimensional systems, these machine learning methods often suffer from the curse of dimensionality meaning that the number of nodes of the network has to be considerably larger than the dimensionality of the input data rendering the training unfeasible with a naive approach. With a parallel prediction scheme based on local states (LS), however, the forecasting of high-dimensional chaotic spatiotemporal systems of arbitrarily large extent becomes possible. The definition of LS relies on defining spatial local neighborhoods, thus the knowledge of the position of the time series in space is a necessary prerequisite for defining LS. Yet, the similarity of time series can also be defined in a much more general way by deducing a distance measure and thus a local neighborhood from the correlations among the time series. We employ this approach to define generalized local states (GLS) for the prediction of high-dimensional systems with which some of the shortcomings of the LS approach can be overcome. First, GLS can make excellent predictions in the case of mixed systems, where LS are doomed to fail. In our examples GLS is even able to infer the different origins of a set of heterogeneous time series, for which the generating processes are unknown. Second, prediction of high-dimensional systems remains feasible when no spatial information is available. This is more and more the typical case in real world applications, when analyzing such heterogeneous data sets like remote sensing data, financial data, social media data, etc.
elib-URL des Eintrags: | https://elib.dlr.de/192502/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Predicting high-dimensional heterogeneous time series employing generalized local states | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 22 August 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Reservoir Computing, Machine Learning, Neural Networks, Time Series, Local States, Chaos, Dynamics of networks, Spatiotemporal chaos, Chaotic systems, Dynamical systems, High dimensional systems, Machine learning, Time series analysis, Nonlinear Dynamics | ||||||||||||
Veranstaltungstitel: | Dynamics Days Europe 2022 | ||||||||||||
Veranstaltungsort: | Aberdeen, Schottland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 22 August 2022 | ||||||||||||
Veranstaltungsende: | 26 August 2022 | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - PISA, D - Kurzstudien [KIZ] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||
Hinterlegt von: | Baur, Sebastian | ||||||||||||
Hinterlegt am: | 13 Jan 2023 10:31 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags