DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions

HosseiniArani, Alireza and Tennstedt, Benjamin and Schilling, Manuel and Knabe, Annike and Beaufils, Quentin and Romeshkani, Mohsen and Wu, Hu and Kupriyanov, Alexey and Pereira dos Santos, Franck and Schön, Steffen and Müller, Jürgen (2022) Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions. 44th COSPAR Scientific Assembly, 2022-07-16 - 2022-07-24, Athen, Griechenland.

[img] PDF - Only accessible within DLR

Official URL: https://app.cospar-assembly.org/2022/browser/presentation/31687


Cold Atom Interferometry (CAI) has proven to be a very efficient technique to achieve high sensitivity for absolute inertial sensing. It is proposed to use CAI accelerometers onboard future generations of satellite gravimetry missions to provide long-term stability and precise measurements of the non-gravitational forces acting on the satellites. This would reduce the overall instrumental errors and improve our knowledge of the Earth gravity field and its change over time. This would allow a better understanding of climate change processes and various geophysical phenomena (e.g. post-glacial rebound). Even though the accuracy and long-term stability of CAI-based accelerometers seem promising, they suffer from long dead times and a comparatively small dynamic range of the sensor. One promising way to handle those drawbacks is to use them in hybrid combination together with a conventional electrostatic accelerometer. We have previously discussed a specific possible solution to employ the measurements of a CAI accelerometer together with a classical accelerometer by applying a Kalman filter Framework which had already shown an improved navigation solution with respect to a reference trajectory. Here, we implement an improved CAI modeling in the simulation to consider the in-flight conditions of a GRACE-like gravimetry mission (e. g. the impact of satellite rotation and gravity gradients) on the CAI measurements. The noise model is also improved to generate more realistic simulated measurements, by considering the impact of different noise sources (e.g. shot noise, detection noise, laser frequency noise and the vibration of the reference mirror). We then perform a closed-loop simulation in which we employ measurements of a CAI accelerometer together with a conventional Inertial Measurement Unit (IMU) using the improved Kalman filter framework and we compare the combined accuracy in the determination of the non-gravitational forces. In addition, we perform simulations using two or three CAI axes. We also study the possibility of having a CAI with a very long interrogation time (>10 seconds) and discuss the challenges and potential improvements. Finally, we compare the recovered gravity field for the various test cases with GRACE solutions.

Item URL in elib:https://elib.dlr.de/192268/
Document Type:Conference or Workshop Item (Speech)
Title:Improved Modeling for Hybrid Accelerometers Onboard Future Satellite Gravity Missions
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
HosseiniArani, AlirezaInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-5080-7094UNSPECIFIED
Tennstedt, BenjaminInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0003-4362-0667UNSPECIFIED
Schilling, ManuelUNSPECIFIEDhttps://orcid.org/0000-0002-9677-0119UNSPECIFIED
Knabe, AnnikeInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-6603-8648UNSPECIFIED
Beaufils, QuentinLNE--SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61, avenue de l'Observatoire, F--75014 PARIS, France, Paris, FRANCEUNSPECIFIEDUNSPECIFIED
Romeshkani, MohsenInstitut für Erdmessung, Leibniz Universität HannoverUNSPECIFIEDUNSPECIFIED
Wu, HuLUH, Leibniz University of Hannoverhttps://orcid.org/0000-0002-2585-5123UNSPECIFIED
Kupriyanov, AlexeyInstitut für Erdmessung, Leibniz Universität Hannover, Germanyhttps://orcid.org/0000-0002-0743-5889UNSPECIFIED
Pereira dos Santos, FranckLNE--SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61, avenue de l'Observatoire, F--75014 PARIS, France, Paris, FRANCEhttps://orcid.org/0000-0003-0659-5028UNSPECIFIED
Schön, SteffenInstitut für Erdmessung, Leibniz Universität Hannoverhttps://orcid.org/0000-0002-5042-6742UNSPECIFIED
Müller, JürgenInstitut für Erdmessung, Leibniz Universität Hannover, Germanyhttps://orcid.org/0000-0003-1247-9525UNSPECIFIED
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Keywords:quantum sensing, cold atom interferometry, accelerometer, GRACE
Event Title:44th COSPAR Scientific Assembly
Event Location:Athen, Griechenland
Event Type:international Conference
Event Start Date:16 July 2022
Event End Date:24 July 2022
Organizer:Committee on Space Research
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Communication, Navigation, Quantum Technology
DLR - Research area:Raumfahrt
DLR - Program:R KNQ - Communication, Navigation, Quantum Technology
DLR - Research theme (Project):R - Inertial Sensing for Space Applications
Location: Hannover
Institutes and Institutions:Institute for Satellite Geodesy and Inertial Sensing > Satellite Geodesy and Geodetic Modelling
Deposited By: Schilling, Manuel
Deposited On:19 Dec 2022 08:23
Last Modified:24 Apr 2024 20:53

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.