Hagengruber, Annette und Leipscher, Ulrike und Eskofier, Björn M und Vogel, Jörn (2022) A New Labeling Approach for Proportional Electromyographic Control. Sensors, 22 (4). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s22041368. ISSN 1424-8220.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.mdpi.com/1424-8220/22/4/1368
Kurzfassung
Different control strategies are available for human machine interfaces based on electromyography (EMG) to map voluntary muscle signals to control signals of a remote controlled device. Complex systems such as robots or multi-fingered hands require a natural commanding, which can be realized with proportional and simultaneous control schemes. Machine learning approaches and methods based on regression are often used to realize the desired functionality. Training procedures often include the tracking of visual stimuli on a screen or additional sensors, such as cameras or force sensors, to create labels for decoder calibration. In certain scenarios, where ground truth, such as additional sensor data, can not be measured, e.g., with people suffering from physical disabilities, these methods come with the challenge of generating appropriate labels. We introduce a new approach that uses the EMG-feature stream recorded during a simple training procedure to generate continuous labels. The method avoids synchronization mismatches in the labels and has no need for additional sensor data. Furthermore, we investigated the influence of the transient phase of the muscle contraction when using the new labeling approach. For this purpose, we performed a user study involving 10 subjects performing online 2D goal-reaching and tracking tasks on a screen. In total, five different labeling methods were tested, including three variations of the new approach as well as methods based on binary labels, which served as a baseline. Results of the evaluation showed that the introduced labeling approach in combination with the transient phase leads to a proportional command that is more accurate than using only binary labels. In summary, this work presents a new labeling approach for proportional EMG control without the need of a complex training procedure or additional sensors.
elib-URL des Eintrags: | https://elib.dlr.de/191961/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A New Labeling Approach for Proportional Electromyographic Control | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 10 Februar 2022 | ||||||||||||||||||||
Erschienen in: | Sensors | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 22 | ||||||||||||||||||||
DOI: | 10.3390/s22041368 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | electromyography; human machine interface; robotcontrol; EMG-control schemes | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||
Hinterlegt von: | Hagengruber, Annette | ||||||||||||||||||||
Hinterlegt am: | 08 Dez 2022 16:23 | ||||||||||||||||||||
Letzte Änderung: | 08 Dez 2022 16:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags