Fuentes Reyes, Mario und d'Angelo, Pablo und Fraundorfer, Friedrich (2022) SyntCities: A Large Synthetic Remote Sensing Dataset for Disparity Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, Seiten 10087-10098. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3223937. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9960780
Kurzfassung
Studies in the last years have proved the outstanding performance of deep learning for computer vision tasks in the remote sensing field, such as disparity estimation. However, available datasets mostly focus on close-range applications like autonomous driving or robot manipulation. To reduce the domain gap while training we present SyntCities, a synthetic dataset resembling the aerial imagery on urban areas. The pipeline used to render the images is based on 3-D modeling, which helps to avoid acquisition costs, provides subpixel accurate dense ground truth and simulates different illumination conditions. The dataset additionally provides multiclass semantic maps and can be converted to point cloud format to benefit a wider research community. We focus on the task of disparity estimation and evaluate the performance of the traditional semiglobal matching and state-of-the-art architectures, trained with SyntCities and other datasets, on real aerial and satellite images. A comparison with the widely used SceneFlow dataset is also presented. Strategies using a mixture of both real and synthetic samples are studied as well. Results show significant improvements in terms of accuracy for the disparity maps.
elib-URL des Eintrags: | https://elib.dlr.de/191873/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | SyntCities: A Large Synthetic Remote Sensing Dataset for Disparity Estimation | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 23 November 2022 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 15 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2022.3223937 | ||||||||||||||||
Seitenbereich: | Seiten 10087-10098 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Disparity estimation, Urban reconstruction, Stereo Matching, Synthetic dataset | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Fuentes Reyes, Mario | ||||||||||||||||
Hinterlegt am: | 08 Dez 2022 09:06 | ||||||||||||||||
Letzte Änderung: | 08 Dez 2022 09:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags