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SyntCities: A Large Synthetic Remote Sensing
Dataset for Disparity Estimation
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Abstract—Studies in the last years have proved the outstanding
performance of deep learning for computer vision tasks in the re-
mote sensing field, such as disparity estimation. However, available
datasets mostly focus on close-range applications like autonomous
driving or robot manipulation. To reduce the domain gap while
training we present SyntCities, a synthetic dataset resembling the
aerial imagery on urban areas. The pipeline used to render the
images is based on 3-D modeling, which helps to avoid acquisition
costs, provides subpixel accurate dense ground truth and simulates
different illumination conditions. The dataset additionally provides
multiclass semantic maps and can be converted to point cloud
format to benefit a wider research community. We focus on the
task of disparity estimation and evaluate the performance of the
traditional semiglobal matching and state-of-the-art architectures,
trained with SyntCities and other datasets, on real aerial and
satellite images. A comparison with the widely used SceneFlow
dataset is also presented. Strategies using a mixture of both real
and synthetic samples are studied as well. Results show significant
improvements in terms of accuracy for the disparity maps.

Index Terms—Disparity estimation, synthetic imagery, urban
reconstruction.

I. INTRODUCTION

A LGORITHMS for disparity estimation have been widely
studied in the last decades in different fields, including the

remote sensing community. It aims to find the correspondence
between two or more rectified images and retrieve the shift for
the pixels location along the epipolar line. From the disparities
it is possible to compute depth values for the objects present
in the samples, which helps to reconstruct 3-D scenes. Most
of the traditional algorithms follow a pipeline with matching
cost computation, cost aggregation, disparity estimation, and
disparity refinement [1].

3-D reconstruction has also been studied by the remote
sensing community, where the input images are processed to
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generate data, such as digital surface models (DSM). However,
the nature of the remote sensing imagery is challenging for many
stereo matching algorithms. Seasonal changes, atmospheric and
illumination conditions, urban redevelopment, among others,
modify the appearance and content of the captured scenes.
Additional difficulties for a successful matching are imposed
by the presence of texture-less, patterned, and non-Lambertian
surfaces. What is more, the disparity range for high mountains
or buildings varies significantly with respect to the one required
for objects with low elevation.

While traditional approaches like semiglobal matching
(SGM) [2] perform well to estimate disparities for many scenes,
deep learning algorithms are now the state of the art, having a
better generalization for complicated areas [3], [4].

Nevertheless, the improved performance offered by deep
learning algorithms demands a large amount of samples for
training, which is sometimes limited or incomplete in remote
sensing. Due to its nature, aerial/satellite-borne data are expen-
sive and its acquisition requires planning to avoid bad weather
conditions. Also, the ground truth for disparity estimation is
usually obtained from LiDAR, that produces a sparse result and
makes it difficult to define sharp boundaries or detect small ob-
jects. In addition, LiDAR shows different behavior in vegetated
areas, especially trees, and needs to be captured simultaneously
to avoid systematic differences due to scene changes, such as
vegetation growth and building activities. 4-D light fields and
plenoptic cameras are also a resource to generate high quality
3-D models [5], but this technology cannot be used during aerial
and satellite data acquisition.

Taking into account the difficulties mentioned above, we pro-
pose a new synthetic dataset for disparity estimation. Since the
rendering is obtained via software, we are able to generate dense
ground truths with sharp boundaries and subpixel accuracy. In
addition, we simulate different illumination conditions, ground
sample distances, and baselines for the stereo system. One of the
novelties of the proposed dataset is its remote sensing oriented
application by using models that resemble urban areas to reduce
the domain gap.

We train different state-of-the-art networks on our generated
samples and test the models on real satellite and airborne data.
Besides, we compare the results by training with the widely used
SceneFlow [6] dataset, where the disparity maps are oriented on
close-range applications.

Our main contributions in this article are the following.
1) We present SyntCities, the first (to the best of our knowl-

edge) large synthetic dataset to train disparity estimation
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focused on remote sensing imagery. Ground truth maps
are dense and offer subpixel accuracy.

2) We conducted a set of experiments on recent neural
networks to analyze the advantage of performing data
augmentation with our generated samples.

3) By comparing with other datasets, we reduce the estima-
tion error and improve the 1-pixel accuracy, which is of
crucial importance for the generation of DSMs.

4) We show how SyntCities has good generalization capa-
bilities to be used even on unseen data for inference of
disparity maps.

5) We share the data in formats that can be further processed
(like point for cloud generation) and include multiclass
semantic maps.

II. RELATED WORK

In this section, we discuss first the existing work oriented
to the generation of synthetic datasets, its applications and
limitations. Second, we mention some studies related to possible
usage of both disparity estimation and semantics segmentation,
since we provide these maps in our dataset and might encourage
the research community to conduct further experiments in this
direction. For our own experiments, we focus on the disparity
estimation part.

A. Synthetic Datasets

Deep learning has helped to outperform many algorithms
related to computer vision recently, but it also demands a large
amount of data to train models that can generalize for testing
images from different sources. However, such large amount of
information is not always available or is expensive to acquire.
Therefore, the application of synthetic datasets is an option that
can compensate the lack of real data for the training process. In
many cases, these datasets are used for pretraining stages and
smaller sets of real data are applied to finetune the models and
reduce the domain gap.

One of the first available synthetic options was the MPI
Sintel Dataset [7], where frames are taken from an open source
movie and rendered to evaluate optical flow algorithms. The
samples were extended to facilitate other tasks, such as semantic
segmentation, camera motion, and stereo matching. In the same
way, the SceneFlow dataset [6] was proposed to train neural
networks for optical flow, but increasing the number of samples
to 34 K (instead of 1 K as Sintel). Due to its large size and variety
of objects and textures, SceneFlow has been one of the main
references to pretrain networks for different tasks. It includes
scenes from a movie, random objects, and resembling a car
perspective on the streets.

Autonomous driving has also benefited from the synthetic
imagery. While real images are part of available datasets, these
are limited in size and might lead to the overfitting of the models.
The KITTI 2012 [8] and KITTI 2015 [9] datasets include images
from cameras with a driver’s perspective, where elements like
streets, cars, houses, or vegetation are part of the scene. They
also include a ground truth from a laser scanner, providing
accurate values for depth. In addition, files for odometry or
semantics ease their application for other tasks. However, the

number of samples (around 400 pairs) limits its implementation
for deep learning architectures and the sparse measures from the
depth sensor provide an incomplete disparity map. As a feasible
solution to balance the amount of required data, SceneFlow can
be used to pretrain the models for disparity estimation, while
the SYNTHIA dataset [10] is a suitable option for the semantic
part. SYNTHIA also focuses on autonomous driving and is
similar in terms of content and geometry to the KITTI datasets.
In contrast, it consists of more than 13 K samples and dense
ground truth maps. Another similar approach is the ParallelEye
dataset [11] based on a pipeline of the CityEngine and Unity3D
software suites. It also includes information for object detection
and tracking.

Nonetheless, the alternatives described above are oriented
to close range applications, which is not suitable for remote
sensing, where large areas are covered and small errors in the
disparity estimation lead to significant inaccuracies in the DSMs.
The Urban Semantic 3-D (US3D) dataset [12] was proposed for
the Data Fusion Contest 2019 (referenced as “grss_dfc_2019”
for the contest itself, but we keep it as US3D in the current article)
and included a stereo matching track. Although the number of
samples enables the training of deep learning architectures, the
disparity maps are not complete (with a default value assigned
to many pixels) and do not archive subpixel accuracy, which
imposes a significant error when computing the depth. In addi-
tion, a multiyear difference between image and ground truth Li-
DAR acquisition causes many inconsistencies due to vegetation,
building, and infrastructure changes. Using multidate imagery
also affects the vegetation measurements, since it has visible
seasonal changes in terms of color and density. Despite the fact
that training with this data might affect the performance of the
networks, testing on such imagery is still one of the few options
for real large areas.

Developing synthetic datasets within the remote sensing en-
vironment has also been studied, although only few publications
address it. The WHU dataset [13] is based on real aerial images
and then merged on a DSM. After that, images are rendered via
software from the generated DSM and it produces a synthetic
output in form of disparity maps. Ground truth is obtained as
dense maps, but the accuracy of the DSM is constrained by the
algorithms of the ContextCapture software.

Under these circumstances, we have developed a new syn-
thetic dataset. Considering that the 3-D software has detailed
information of the geometric content of the scenes, dense and
accurate ground truths can be achieved. Furthermore, expanding
the dataset for additional views or different simulated conditions
can be easily done, reducing costs and time.

B. Approaches to use Both Disparity and Semantic Maps

Although the present work focuses on the disparity
estimation, the provided semantic maps can be a helpful resource
for research making use of both data sources, since these exploit
the geometric information from the scene. This idea was recently
addressed on the Data Fusion Contest 2019 [14], [15], [16],
where semantic and disparity maps are predicted and evaluated
for the same regions on one of the tracks.
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Fig. 1. Simplified pipeline used for the proposed dataset generation.

Real datasets for semantic segmentation, such as US3D have
incomplete semantic maps, with noisy buildings and many
elements without an assigned category. On the contrary, syn-
thetic datasets avoid expensive manual annotations and pro-
vide sharp dense maps. An existing synthetic example is the
Synthinel-1 dataset [17], where models from the CityEngine
software are rendered to create segmentation maps with the
labels building/no-building. While the pipeline is an efficient
way to generate the data and resembles real imagery, the ground
truth is limited to two classes and depth information is not
included.

Some publications have already studied the usage of both
input sources. In SegStereo [18] the semantic information is
embedded in the network and also being learned as an interme-
diate step to refine the disparity map. GIO-Ada [19] learns to
reduce the domain gap by creating intermediate samples with a
more realistic appearance and later estimates both semantic and
depth maps. DispSegNet [20] proposed an architecture similar
to SegStereo but using the semantic embedding for the disparity
loss and created an enhanced cost volume to improve the accu-
racy. RTS2Net [21] focused on real-time efficiency and followed
a coarse to fine design. SSPCV-Net [22] considered pyramid
cost volumes to describe semantics and geometry. CorDA [23]
used the depth estimation as an intermediate step to retrieve the
disparity maps and with this information reduced the domain
gap.

Many of these methods achieve good quality results, but at
least for the disparity estimation, they do not compete with the
state-of-the-art solutions in terms of accuracy. By releasing this
dataset, we intent to facilitate further research in this direction.

III. DATASET GENERATION AND DESCRIPTION

The generation of the dataset makes use of different 3-D
software suites and scripts for modeling, rendering, and postpro-
cessing. In Fig. 1, a simplified description of the adopted pipeline
is shown. The detailed steps are explained in the following
paragraphs.

A. City Modeling

CityEngine is a software that allows to build cities in a 3-D
environment and follows the CGA shape grammar language.
Large models can be created from Open Street Map (OSM) and
user defined rules for the city architecture and its distribution.
In the current article, we started from the example models for
New York, Paris, and Venice that are publicly available on the
Esri platform.

Empty areas from the examples were replaced with parks
and buildings to set content in all the regions of the scene.
Vegetation was changed to textured ellipsoid models instead
of the intersected planes to have a more natural distribution of

depth values. In addition, we used the script option within the
CityEngine environment to separate the buildings according to
the rooftop type, this is done to provide the additional semantic
maps.

A model including only the buildings belonging to each roof
type and a full model including all elements in the scene are
exported. All cases were exported in Wavefront (.obj) format.
CityEngine consumes approximately 17 GB of RAM memory to
manipulate the full models, and requires few minutes to export
the whole scene.

B. Model Refinement

The models were later imported in the Blender software,
which is an open source for 3-D modeling, animation, and
rendering. Here, the objects were split into different categories,
which are represented in the ground truth segmentation maps.
The objects were created by separating the faces of the complete
3-D scene according to the image file used as texture. This does
not apply to the buildings, which were previously separated
by roof type in CityEngine. A single file in COLLADA (.dae)
format is exported with the merging of all objects.

Illumination conditions and camera properties are studied
in the 3-D environment to set the appropriate values for each
city. The light is set to the Sun mode to have a homogeneous
brightness in the whole area. A vertex located close to the center
of each model is used as a reference to set the camera positions.
Apart from that, changes are applied on the reflection properties
of the surfaces as well as on the noise distribution for textures.
Minor editing was also conducted to avoid empty regions that
might lead to the presence of outliers. Furthermore, we set a
3-D plane below the models as background, which avoids infinite
depth while rendering for not defined regions. The manipulation
and edition of the models in Blender requires approximately
8 GB of RAM memory.

C. Rendering

Once the models were complete, we utilized the BlenderProc
pipeline [24] to render within the Blender environment. Blender-
Proc requires a detailed configuration file to set properties, such
as camera positions, camera parameters, stereo configuration,
illumination conditions, output resolution, etc.

Our approach wraps BlenderProc, so we can define externally
the main parameters for our dataset. Here we also set the camera
positions according to the size of the city model and the desired
overlapping between samples. The stereo rig configuration is
computed from the base-to-height ratio and allows different
baselines. The configuration file required by BlenderProc is then
built with the specified parameters.

In addition, we manipulated the antialiasing filters to produce
smooth borders in the RGB samples but sharp edges for the
depth maps. For each camera position we rendered a pair of
RGB images, their depth maps and their segmentation maps.

We also experimented the option to produce instance maps
(where each building would be assigned a label), but the compu-
tational cost is too high even for one camera position. Rendering
a pair in instance segmentation mode requires around 200×
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Fig. 2. Samples from the SyntCities dataset. Optical imagery used for input is shown in (a) for the left and (b) for the right view, with the respective depth and
disparity maps for the left view in (c) and (d) (Samples for the right view are also available, but not shown in this image). In (e) we illustrate the left-right consistency
masks, where the region in white is not visible in both views. (a) RGB - left view. (b) RGB - right view. (c) Depth map. (d) Disparity map. (e) Consistency mask.

longer than the semantic case. The rendering process for SyntC-
ities takes a bit more than five days using a NVIDIA Quadro
P1000 graphics card with 4 GB memory and Blender 2.93.

D. Postprocessing

RGB images and semantic maps were directly obtained from
the rendering process. In contrast, the depth map has to be
translated into a disparity map. Since the depth is measured in a
radial way from the center of the camera, we transformed it into
distance to the camera plane first. After that, the distance is used
with the known camera parameters to compute the disparity as
follows:

d =
f · b
z

(1)

where d is the disparity, f the focal length, b the baseline of the
stereo rig, and z the distance to the plane. The disparity values
are then transformed into pixels. As a result of the different
baselines applied to create the dataset, occlusions are present
in many samples. Therefore, we also created left-right check
consistency maps to mask pixels that are not visible in both
views. The threshold for consistency is set to 1 pixel.

Homogenization of categories between different models and
rendering conditions is also applied, so the labels remain co-
herent between all the samples. For users requiring the camera
extrinsic and intrinsic matrices, we also provide these in separate
files for each camera position and view. Such matrices are
usually expected for multiview stereo (MVS) neural networks.

E. Description

The presented dataset includes a total of 8100 image pairs
with the following features.

1) Three city models: New York, Paris, and Venice.
2) Three ground sampling distances (GSDs): 10 cm, 30 cm,

and 1 m.
3) Three azimuth angles (150◦, 180◦, and 210◦) and three

elevation angles (20◦, 50◦, and 70◦) for the simulated Sun
light.

4) Four base-to-height ratios (BH) per city: 0.1, 0.3, 0.5, and
0.9 for Paris and Venice; 0.03, 0.07, 0.10, and 0.12 for
New York.

5) For each combination of the previous parameters 20 pairs
are available for training and 5 for testing. This split is
fixed for all cases.

6) Disparity values are mainly in the range of [0,192]. This
facilitates its direct usage in deep learning frameworks,
where the cost volumes usually use such range to estimate
the disparities.

On the Fig. 2, we show samples from the dataset for a small
region on the simulated Paris model. The 8100 pairs include
a similar subset of images, camera parameters, and rendering
conditions. All images have a resolution of 1024 × 1024 pixels.

F. Semantic Categories

As mentioned before, semantic maps are also included.
There are 13 categories available: vegetation, streets, rooftops
(mansard, gambrel, gable, hip and flat styles), facades, gardens,
landmarks, cars, and background. Fig. 3 shows an example of
the semantic maps for the same patches represented in Fig. 2.
Samples for both left and right view are available.

G. Data for Point Cloud Generation

Taking advantage of the available rendered maps and known
camera parameters in SyntCities, we explored the possibility of
generating point clouds based on the depth and semantic maps.
We utilized the Open3D library [25] for this purpose.

Due to their large file sizes, we do not include these outputs
in the dataset, but this can be easily generated from the provided
images.

Although we did not conduct any experiments in this di-
rection, we consider this would be helpful for deep learning
strategies applied to point clouds, specially because the type of
rooftops and other geometries can be learned.

IV. DISPARITY ESTIMATION EXPERIMENTS

We have conducted a series of experiments to analyze the ad-
vantages of training architectures on SyntCities for the disparity
estimation. Aside from our proposed dataset, we also worked
with samples from SceneFlow, US3D, and an aerial 4 K dataset
processed by DLR [26].

SceneFlow is the main reference to train networks for dispar-
ity estimation due to its large size, but as we have previously
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Fig. 3. Additional samples from SyntCities. Optical imagery used for input is shown in (a) for the left and (b) for the right view, with the respective segmentation
maps in (c) and (d). Colors for each category are displayed in the list at the right. (a) RGB - left view. (b) RGB - right view. (c) Segmentation map left. (d)
Segmentation map right.

mentioned it is oriented to close-range applications. Hence, we
want to compare how networks perform while training with both
synthetic options SceneFlow and SyntCities, to investigate if
the domain gap with respect to real satellite/aerial imagery is
reduced.

On the other hand, we also consider two real datasets. First,
we take samples from US3D covering areas above Jacksonville,
Florida and Omaha, Nebraska. The images are captured by the
WorldView3 satellite with 30-cm GSD for the panchromatic
case. The ground truth is obtained from an aerial LiDAR sensor
and almost 4000 pairs are available for training.

Second, we use a 4 K collection of aerial imagery covering
the area of Gilching, Germany with 6.9-cm GSD. The reference
disparity map for these samples is obtained by an SGM imple-
mentation for multiview stereo matching, where a high-quality
DSM is cropped to match the location of the images. Because of
the size of this dataset (we consider only 16 images, where urban
and semiurban areas are covered), we use the samples only to
test the algorithms.

A. Stereo Matching Algorithms

SGM has been the main algorithm for stereo matching in
the last decades. Its compromise between accuracy and compu-
tational cost makes it a feasible option for many applications
and is used in open source pipelines for 3-D reconstruction
like S2P [27]. Unlike deep learning architectures, SGM does
not need to be trained on the target domain. Nevertheless, the
computation of the aggregated cost requires parameters that are
set empirically and have to be adapted to the features of the input
images. Those parameters limit the performance of the algorithm
and might lead to incomplete disparity maps as outputs.

Deep learning approaches on the other hand require large
volumes of data. Even when recent state-of-the-art architectures
outperform SGM and traditional methods, the models are not
able to handle easily changes in the target domain. For example,
a network that has been trained on data for autonomous driving
might have a poor performance when applied for remote sensing
imagery. Moreover, the training process frequently takes days
and a high computational cost in terms of memory and GPU
usage.

Despite the drawbacks mentioned above for deep learn-
ing, it performs better than traditional algorithms having
enough data and a reliable ground truth. Since the publi-
cation of MC-CNN [3], where a cost volume is generated
with convolutional neural networks, many architectures have
achieved outstanding performance for benchmarks like KITTI or
Middlebury [1].

Some other remarkable approaches include the first end-to-
end architectures Disp-Net [6] and GC-Net [28], where post-
processing steps, such as SGM are removed and the refinement
of the disparity maps is embedded in the learning process. A
significant improvement was later presented with the design
of PSMNet [29], which includes a pyramid pooling model
to recover more context information and makes use of 3-D
convolutions to regularize the cost model, a strategy used in
many further architectures. Based on a similar principle to
SGM, GANet [4] evaluates the costs along different directions
to refine the cost volume and avoid discontinuities. To reduce the
domain gap presented in the previous networks, DSMNet [30]
applies a domain-invariant normalization which benefits of the
synthetic imagery. Nevertheless, its performance is not as good
as GANet when using the same training dataset. A different
concept is presented in AANet [31] to reduce both memory
consumption and inference times, while slightly decreasing the
accuracy. More recently, strategies consisting of gated recurrent
units (GRUs) have been introduced to computer vision tasks
with an outstanding performance. This has been applied to the
disparity estimation problem, where RAFT-Stereo [32] includes
a series of GRUs to estimate maps at full resolution and with
high accuracy. In a different strategy, SMAR-Net [33] includes
a GAN to compensate for sparse ground truths by warping the
left image with the disparity map.

For this article, we train our models in two networks: GANet
and AANet. The reason to select these networks is the accuracy
for GANet and the reduced computational cost of AANet, being
both also a common framework to compare other architectures.

GANet includes two types of novel layers named semiglobal
guided aggregation (SGA) and local guided aggregation (LGA).
SGA is based on a principle similar to SGM by considering four
directions for the cost aggregation step and LGA recovers infor-
mation from thin structures. The parameters that are empirically
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TABLE I
COMPOSITION OF THE INPUT DATA FOR THE PROPOSED EXPERIMENTS WITH

GANET

set in SGM are adapted in the model to be learned while training.
GANet outperformed the PSMNet (which had the best result for
KITTI back then) and generates accurate results on subpixel
level. However, the training process might take many days and
is computationally demanding.

To reduce the memory and time consumption we conduct
experiments with AANet as well. AANet introduces two adap-
tive aggregation approaches in an intra- and cross-scale manner.
The intra-scale aggregation is similar to deformable convolu-
tion [34], [35] and adds an offset to the convolutional filters
to improve the quality of the result around boundaries and
thin structures. The cross-scale aggregation shares information
between different scales. Its based on the idea that correspon-
dences in the coarsest scale are more discriminative in textureless
regions and this can guide the algorithm in the finer scales.

B. GANet Experiments

We trained the GANet network with different samples and
tested on real aerial and satellite data. The configurations for
training are listed in Table I. For each training, we show the
percentage of each available dataset that was used as input. From
this point on, we use SF and SC as acronyms for SceneFlow and
SyntCities, respectively, specially to describe the experiments
and results based on this data.

The SceneFlow model was trained only for 10 epochs due
to its very large size (more than 35 K pairs are included) and
took more than six days. For the other cases we trained for 27
epochs, resulting on two days of training time and four days in
the GA-SCd case. GA-SCd corresponds to the “GANet deep”
model presented by the authors in the original paper and includes
more layers than the basic model. Here, 6480 image pairs are
taken as input, corresponding to all the training samples (80%
out of the 8100 available). For the GA-95SC instance, we want
to observe the performance of the training when a real but small
dataset is available and we can mix the samples with the synthetic
ones to compensate the lack of data. We used 4750 samples from
SyntCities and 250 from US3D. The GA-US3D model had 4000
samples for training.

Training was conducted on four GeForceRTX 2080 GPUs
with 12 GB memory each, a batch size of 4, patches with 432 ×
432 pixels size, a disparity range of [0, 192], and the other pa-
rameters have the default values of the GANet implementation.

TABLE II
COMPOSITION OF THE INPUT DATA FOR THE PROPOSED EXPERIMENTS WITH

AANET

C. AANet Experiments

Similarly, we trained AANet with different configurations.
Because of the reduced memory consumption and faster training,
we conducted an extensive set of experiments. Table II shows the
configurations for the different training models, following the
same description system, as explained for Table I. The AA-SF
model was trained for 64 epochs, as suggested in the AANet
paper. For the other models we adapted accordingly the number
of epochs to have a similar training time (around 48 h each). AA-
SF is trained again with more than 35 K pairs, AA-SC is trained
with 6480 pairs for 350 epochs, AA-US3D with 4000 pairs for
560 epochs and the other models with 5000 samples for 450
epochs. Many cases with mixed sources are trained to observe
the advantages of data augmentation from synthetic imagery.
For all these options we used both SceneFlow and Syntcities.
Again, we trained on four GeForceRTX 2080 GPUs with 12 GB
memory each, a batch size of 24, patches with 288 × 576 patch
size, and a disparity range of [0, 192]. Other parameters are kept
with the default values.

V. DISPARITY ESTIMATION RESULTS

The trained models were tested on the US3D and the aerial
4 K datasets. We evaluated four metrics to assess the quality
of the results. For the statistical metrics, we use the median-
based values instead of the mean-based ones because of their
robustness to outliers and their capabilities to summarize skew
distributions better [36]. First, we compute the median of the
difference between the ground truth and the generated disparity
maps. For this metric we did not consider the median of the
absolute difference to use it as an indicator of a possible bias.
This is computed as

Mediandiff = median(Xdiff), Xdiff = X − X̄ (2)

where X is the ground truth, X̄ is the generated result, and Xdiff

is the difference between both. Second, we compute the median
absolute deviation (MAD) of the difference as

MADdiff = median(| Xdiff − ˜Xdiff |), ˜Xdiff = median(Xdiff).
(3)

The absolute value is used in this occasion to analyze the
precision of the disparity values. We also consider the 3 pixel
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TABLE III
RESULTS OF GANET FOR THE US3D DATASET

accuracy, where the percentage of pixels whose difference with
respect to the ground truth is below or equal to 3. Likewise,
we estimate the 1 pixel accuracy. While a margin of 3 pixels
for errors in the disparity map is acceptable for applications
like autonomous driving, it would represent a large error when
the depth is estimated from the aerial/satellite camera. For that
reason, we also consider pertinent to analyze how this metric
performs.

A. GANet Results

In Table III, we observe the results of using the GA-SF,
GA-SC, GA-SCd, GA-US3D, and GA-95SC models for the
US3D dataset. In addition, we also compared the results with
the traditional SGM algorithm. It is important to mention that
SGM does not produce a complete result, but has values only for
those pixels where the estimation achieves the quality accepted
by the algorithm. However, we evaluate the metrics in the whole
image since completeness is a desired feature as well.

Considering the 3 pixel accuracy, we can observe that all
the trained models outperform SGM by a significant margin.
If we compare only GA-SF and GA-SC we notice already an
improvement of 7% despite the shorter time that was used to
train on the SyntCities dataset. GA-SCd has even more accurate
results, but it also required a larger training and might not be
a suitable option if the computational resources are limited.
The model GA-US3D is even better by 6%, which is also
expected since the domain gap does not play a role for this case.
Interestingly, the GA-95SC model is the one that performed
best, although it does not rely only on samples from the US3D
dataset. While the improvement for the 3 pixel accuracy metric
is slightly higher, the case for 1 pixel accuracy increases more
than 7%. By comparing the results on the GA-95SC model and
GA-US3D, the former had issues to estimate some areas, but
produced sharper results than the latter. The training process
augmented with the synthetic data seems to benefit from the
accurate ground truth available on SyntCities. It is also important
to remark that this strategy could work for datasets with reduced
volume as well.

Focusing now on the 1 pixel accuracy, SGM has actually a
better result than GA-SF but worse than GA-SC. In this way,
we can notice how SC boosts accuracy to a finer detail. As
mentioned before, this metric has special attention from the
remote sensing community for a correct 3-D reconstruction.
The values for Mediandiff and MADdiff follow a similar trend
to the accuracy.

TABLE IV
RESULTS OF GANET FOR THE 4 K AERIAL DATASET

Images to show the performance of the algorithms are pre-
sented in Fig. 4. The first row illustrates the disparity maps
obtained and the respective reference. The second row shows the
error maps, where all values ≥ 3 are in yellow. We can observe
how completeness is obtained by all deep learning algorithms,
which is not the case for SGM. However, the valid values
obtained by SGM show good accuracy. Now, if we compare only
the GA-SC and GA-SF cases for the disparity map, we can notice
a better estimation for building areas and vegetation on GA-SC,
as illustrated with the red rectangles. The model GA-95SC is of
course the one with the best reconstruction, since it was partially
trained on the test domain.

We can also study the performance for the error maps, where
the presence of large areas in blue (error≤ 1 pix) is desired. This
is already achieved for many building and street sections on the
GA-SC model as shown in the red rectangles. Difficult areas to
solve for the model remain mostly for vegetation and vehicles,
which in some cases were not present on the right view. In any
case, the significant reduction of the error range would lead to a
superior quality for DSM generation, crucial for remote sensing.

With regard to the results shown in Table IV for the 4 K
aerial data we have a similar behavior. All models show a better
accuracy for this dataset in comparison to US3D, this might
be a result of the quality of the data referenced as a ground
truth. Again, the neural networks outperform SGM, also for
1 pixel accuracy in this case. The GA-SCd model has a slight
improvement with respect to the normal GA-SC. We did not
compare the GA-95SC model because it would be challenging
to evaluate the individual benefit of each of the two sources of
the mixed dataset.

Nevertheless, we made inference on the GA-US3D model as
this case is trained on real data as well. A 10% decrease in the
3 pixel accuracy of the result shows that training a model only
on US3D data cannot be used for a different set of images, while
the SF and SC datasets have a better generalization to estimate
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Fig. 4. Results from the GANet for the US3D dataset. The disparity reference (a) is compared to the disparity maps obtained by SGM (b) and the models GA-SF
(d), GA-SC (d), GA-95SC (e) and GA-US3D (f). The range for the disparities is set from 90 to 192. Error maps for the reference RGB image (g) are shown for
the same models SGM (h), GA-SF (i), GA-SC (j), GA-95SC (k) and GA-US3D (l). The error range is clipped to 0-3 pixels. (a) Disparity reference. (b) Disparity
SGM. (c) Disparity GA-SF. (d) Disparity GA-SC. (e) Disparity GA-95SC. (f) Disparity GA-US3D. (g) RGB - Left view. (h) 3pix error SGM (i) 3pix error GA-SF.
(j) 3pix error GA-SC. (k) 3pix error GA-95SC. (l) 3pix error GA-US3D.

Fig. 5. Results from the GANet for the 4 K aerial dataset. The disparity reference (a) is compared to the disparity maps obtained by SGM (b) and the models
GA-SF (d) and GA-SC (d). The range for the disparities is set from 20 to 70. Error maps for the reference optical image (e) are shown for the same models SGM
(f), GA-SF (g) and GA-SC (h). The error range is clipped to 0-3 pixels. (a) Disparity reference. (b) Disparity SGM. (c) Disparity GA-SF. (d) Disparity GA-SC. (e)
Optical - Left view. (f) 3pix error SGM. (g) 3pix error GA-SF. (h) 3pix error GA-SC.

disparities in different domains. Moreover, the accuracy in terms
of 1 pixel is lower than any other case, including SGM that is
not defined for all the pixels.

Visual results for the experiments on the 4 K aerial dataset
are displayed in Fig. 5. Similarly to the US3D dataset, we notice
more complete buildings and detection of vegetation on the GA-
SC model. This is highlighted with the red rectangles. The effect

is similar when analyzing the error map, where a significant
part of the constructions is within 1 error accuracy and a larger
number of trees is retrieved.

In all the illustrated cases, vegetation is still a challenging
element in part because of seasonal changes, but we also think
that a more realistic 3-D representation on the synthetic models
could improve the performance.
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TABLE V
RESULTS OF AANET FOR THE US3D DATASET

Fig. 6. Results from the AANet for the US3D dataset. The disparity reference (a) is compared to the disparity maps obtained by SGM (b) and the models AA-SF
(d), AA-SC (d) and AA-US3D (e). The range for the disparities is set from 90 to 192. Error maps for the reference RGB image (f) are shown for the same models
SGM (g), AA-SF (h), AA-SC (i) and AA-US3D (j). The error range is clipped to 0-3 pixels. (a) Disparity reference. (b) Disparity SGM. (c) Disparity AA-SF. (d)
Disparity AA-SC. (e) Disparity AA-US3D. (f) RGB - Left view. (g) 3pix error SGM. (h) 3pix error AA-SF. (i) 3pix error AA-SC. (j) 3pix error AA-US3D.

B. AANet Results

Results from the implementation of the AANet architecture
for the US3D dataset are shown in Table V. Accordingly, to
the findings explained for the GANet, the deep learning models
also outperform SGM. The highest accuracy is achieved by AA-
US3D, which is an expected outcome taking into account that it
is trained and tested on images of the same domain. Again, the
AA-SC model got a better result than AA-SF and demonstrates
the benefits of SyntCities for the training process.

There are also many cases presented with a mixture from the
input data. Models with SceneFlow and SyntCities are compared
at different rates of shared data. Nonetheless, the options where
SyntCities is involved perform better than those with SceneFlow.
This can be noted in both 3 and 1 pixel accuracy. Due to image
size limitations not all the cases are illustrated.

Once more we appreciate the advantages of mixing the data
with real samples. US3D has enough samples to be trained on
its own imagery, but this might not be the case for other small
datasets. Even by adding only 1% of real data to the training
process we can reduce the domain gap, as exhibited in the last
two columns of the table (comparing only with AA-SF and AA-
SC).

Visual results related to these experiments are shown in Fig. 6.
AA-SC generates sharper buildings and finer forest sections
as remarked in the red rectangles. The range for disparities

TABLE VI
RESULTS OF AANET FOR THE 4 K AERIAL DATASET

in the ground level is also more consistent with less gener-
ated discontinuities. Similar conclusions can be derived from
the error maps displayed in the second row, where values for
buildings and streets are more uniform on the AA-SC model.
This is a congruous result for as much as the 3-D models were
largely defined for these regions. Although there is room for
improvement on the simulated urban scenes, the current quality
of the synthetic samples suggests that its usage for training and
pretraining is a feasible strategy. The vegetation is still a difficult
area to address even for the AA-US3D model.

Turning to the results of the 4 K aerial view dataset shown
in Table VI, the AA-SC model performs the best for both 1 and
3 pixels accuracy. An interesting point is the 1 pixel accuracy of
SGM, which surpasses the one from AA-SF. This has also been
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Fig. 7. Results from the AANet for the 4 K aerial dataset. The disparity reference (a) is compared to the disparity maps obtained by SGM (b) and the models
AA-SF (d) and AA-SC (d). The range for the disparities is set from 20 to 70. Error maps for the reference optical image (e) are shown for the same models SGM
(f), AA-SF (g) and AA-SC (h). The error range is clipped to 0-3 pixels. (a) Disparity reference. (b) Disparity SGM. (c) Disparity AA-SF. (d) Disparity AA-SC. (e)
Optical - Left view. (f) 3pix error SGM. (g) 3pix error AA-SF. (h) 3pix error AA-SC.

observed in Tables III and IV. It seems that SyntCities raises the
subpixel accuracy.

Images related to this experiment are on display in Fig. 7. In
the selected sample vehicles are also present (see the largest red
rectangle on the disparity maps) and finely estimated with the
AA-SC model, where sharper boundaries are visible. AA-SC
also has an improved representation for vegetation areas. The
constructions have a similar performance to the other train-
ing experiments, exhibiting the benefits of the AA-SC mod-
els. Similarly to the results from GANet, the disparity maps
generated on a model trained only on US3D data have larger
errors than those trained on the synthetic data. Furthermore,
the 1 pixel accuracy is again lower than the other compared
methods.

An interesting point to mention for both GANet and AANet
is the sensitivity to the disparity distribution of the training
dataset. From the conducted experiments, we observed that the
larger range covered by the synthetic datasets adapts easier
for inference in unseen data. On the other hand, US3D has a
narrower range and this would lead for a lower performance
if the images are not preprocessed before inference on this
model. We shifted the left image of the 4 K aerial samples to
obtain a disparity distribution similar to the one of the US3D
dataset to have a fair comparison. Without this preprocessing,
a large systematic disparity offset has been observed. However,
this behavior could cause worse results for other experiments
if the data are directly fed into the networks without previous
knowledge of the disparity distributions used in training. This

will especially affect hilly or mountainous areas with larger
disparity differences.

VI. CONCLUSION

A reliable DSM is a valuable resource for applications, such
as city planning, updating of cadastral data, transport and flight
simulation, autonomous driving or prevention and response to
natural disasters, among others. Considering that, we presented
in the current article the SyntCities dataset, which is to the best
of our knowledge, the first large synthetic dataset for disparity
estimation with focus on remote sensing. The generated samples
include different illumination conditions and stereo configura-
tions and benefit from the simulation model to generate a dense
and accurate ground truth.

Experiments made for the disparity estimation demonstrate
that the accuracy is improved by using our proposed dataset in
comparison to models trained on the Scene Flow dataset. This
was observed for both aerial and satellite data. A significant
outcome is the boost for 1 pixel accuracy, which is desired for
remote sensing applications where a single pixel might represent
a large distance on the ground.

We also observed that our samples can be used as an augmen-
tation strategy to compensate the lack of data in small real sets.
Furthermore, models training on SyntCities without fine-tuning
achieved a good performance on unseen data, such as the US3D
and the 4 K aerial samples.
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For future work, we want to upgrade the quality of the 3-D
models by including not only urban areas but also features from
natural landscapes, a more realistic vegetation representation
and an expanded variety of buildings and architecture. We would
also like to conduct some experiments to benefit from both
disparity and semantic maps, since their information might be
complementary. An algorithm able to create a labeled DSM
would enhance many spatial databases.

Apart from that, the dataset could be enhanced with additional
viewpoints to allow the training of multiview-stereo algorithms.
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