Flynn, Andrew und Heilmann, Oliver und Köglmayr, Daniel und Tsachouridis, Vassilios und Räth, Christoph und Amann, Andreas (2022) Exploring the limits of multifunctionality across different reservoir computers. In: 2022 International Joint Conference on Neural Networks, IJCNN 2022. IEEE. 2022 International Joint Conference on Neural Networks (IJCNN), 2022-07-18 - 2022-07-23, Padua, Italien. doi: 10.1109/IJCNN55064.2022.9892203. ISBN 978-1-7281-8671-9. ISSN 2161-4393.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9892203
Kurzfassung
Multifunctional neural networks are capable of performing more than one task without changing any network connections. In this paper we explore the performance of a continuous-time, leaky-integrator, and next-generation reservoir computer (RC), when trained on tasks which test the limits of multifunctionality. In the first task we train each RC to reconstruct a coexistence of chaotic attractors from different dynamical systems. By moving the data describing these attractors closer together, we find that the extent to which each RC can reconstruct both attractors diminishes as they begin to overlap in state space. In order to provide a greater understanding of this inhibiting effect, in the second task we train each RC to reconstruct a coexistence of two circular orbits which differ only in the direction of rotation. We examine the critical effects that certain parameters can have in each RC to achieve multifunctionality in this extreme case of completely overlapping training data.
elib-URL des Eintrags: | https://elib.dlr.de/191860/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Exploring the limits of multifunctionality across different reservoir computers | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||
Erschienen in: | 2022 International Joint Conference on Neural Networks, IJCNN 2022 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1109/IJCNN55064.2022.9892203 | ||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||
ISSN: | 2161-4393 | ||||||||||||||||||||||||||||
ISBN: | 978-1-7281-8671-9 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | artificial intelligence, machine learning, reservoir computing, multifunctionality, time series analysis, prediction | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 2022 International Joint Conference on Neural Networks (IJCNN) | ||||||||||||||||||||||||||||
Veranstaltungsort: | Padua, Italien | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 18 Juli 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 23 Juli 2022 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ], D - PISA | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||||||||||||||
Hinterlegt am: | 21 Dez 2022 10:47 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags