elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hybrid Methods for Poisson and Stokes

Griese, Franziska und Knechtges, Philipp und Rüttgers, Alexander (2022) Hybrid Methods for Poisson and Stokes. WAW ML 8, 2022-11-07 - 2022-11-09, Jena, Germany.

[img] PDF
1MB

Kurzfassung

In this talk two different hybrid approaches which both combine physical knowledge with neural networks are examined. First, we consider physics-informed neural networks which embed the differential equations into the loss function of a neural network. Second, we present our novel hybrid approach which incorporates the residual of the finite element formulation on a discretization into the loss function of a neural network. Both methods are trained without data from simulations or measurements, but rely on the partial differential equation itself. Finally, we evaluate the methods applied to the Poisson equation and the Stokes flow.

elib-URL des Eintrags:https://elib.dlr.de/191826/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Hybrid Methods for Poisson and Stokes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Griese, FranziskaFranziska.Griese (at) dlr.dehttps://orcid.org/0000-0003-4116-2316NICHT SPEZIFIZIERT
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593NICHT SPEZIFIZIERT
Rüttgers, AlexanderAlexander.Ruettgers (at) dlr.dehttps://orcid.org/0000-0001-6347-9272NICHT SPEZIFIZIERT
Datum:7 November 2022
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Finite Element Method, Machine Learning, Neural Netwok, Stokes problem, Hybrid Models, Physics Informed
Veranstaltungstitel:WAW ML 8
Veranstaltungsort:Jena, Germany
Veranstaltungsart:Workshop
Veranstaltungsbeginn:7 November 2022
Veranstaltungsende:9 November 2022
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Griese, Franziska
Hinterlegt am:20 Dez 2022 10:54
Letzte Änderung:24 Apr 2024 20:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.