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Motivation

▪ Technical systems are becoming more and 

more complicated, making modeling them 

more complex and expensive 

→ use NN’s to build surrogate models

▪ By data-driven approaches some natural laws are not or only poorly 

considered

→ Hybrid methods, which combine physical knowledge and NN’s
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Conservation of 

Energy Mass Momentum



FENN (Finite Element Neural Network)
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▪ Combines classical finite element method with a NN

▪ Use best of both worlds

▪ Physical knowledge in form of a PDE is used

FEM NN

Sparsity patterns: because of 

locality of elements

Fast prediction after training

No multi-objective optimization 

→ naturally including BC,...

Generalizable

Numerical theory of errors can 

be used



FENN
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▪ Calculate: 

𝑢(𝑥) = σ𝑗=1
𝑛 𝑢𝑗

ℎ ⋅ ф𝑗(𝑥)Parameter(s) 
𝜆

Prediction for
𝑢ℎ

𝐿𝑜𝑠𝑠 = 𝐾 ⋅ 𝑢ℎ – 𝐹
2

FEM: Galerkin system

Variable(s) x



Comparison to PINN’s

▪ PINN:

▪ FENN:
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▪ Main difference: loss function

• PINN: residuum of PDE using automatic differentiation

• FENN: residuum of FEM’s Galerkin system

𝑥, 
Parameter(s)

Prediction for
𝑢(𝑥)

𝐿𝑜𝑠𝑠 = 𝑅𝑒𝑠𝑃𝐷𝐸
2 + 𝑅𝑒𝑠𝐵𝐶
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FENN advantages:

▪ Numerical theory 

of errors can be 

used

▪ Sparsity patterns

▪ No multi-objective 

optimization 



1D Poisson Problem

▪ PDE:

𝜕2𝑢

𝜕𝑥2
= 𝑓 with 𝑓 = 𝜆, 𝜆 ∈ℝ

▪ BC: 𝑢 −10 = 𝑢 10 = 0
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PDE-Solution for training set



FENN - Poisson
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▪ First issue: loss converges to local minima 

▪ 𝐾2 squares condition, use loss function with residuum as 

minimum

▪ Second issue: bad condition of stiffness matrix K 

▪ Preconditioning with Cholesky decomposition 𝐾 = 𝐿 ⋅ 𝐿𝑇

Without Preconditioning With Preconditioning

𝐾 ⋅ 𝑢ℎ – 𝐹
2

→ 𝑢ℎ
𝑇
⋅ (0.5 ⋅ 𝐾 ⋅ 𝑢ℎ − 𝐹)



Poisson – Comparison FENN & PINN
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FENN PINN

Convergence Good results for different NN-architectures and optimizers

Training time ~ 1 sec ~ 3 min

Generalization

Inside training interval

Outside training interval



2D Stokes flow around an airfoil

▪ PDE: 

∇ ⋅ 𝑢 = 0,
∇𝑝 − Δ𝑢 = 0,

▪ with u the velocity and p the 
pressure

▪ BC: Dirichlet at left, top, bottom; 
Neumann at right; no-slip at 
airfoil
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Mesh around NACA 0012 airfoil.

▪ Saddle point problem

▪ Even for FEM no easy problem



2D Stokes flow around an airfoil
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▪ Constructed fully 

differentiable FEM-

Solver for Stokes in 

PyTorch

▪ Used Taylor-Hood 

elements to construct 

Galerkin system



FENN - Stokes

▪ Ongoing process

▪ Indefinite stiffness matrix → both tricks used for Poisson equation don’t work

▪ Other preconditioners are needed

▪ But system differentiable for every possible parameter
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Outlook

▪ Solve Stokes flow around airfoil with FENN and PINN

▪ Airfoil with parameterizable angle of attack

▪ Inverse problems e.g. state estimation: sensors at airfoil want to measure 

angle of attack

▪ Uncertainty Quantification
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Thank you for your attention!

Questions?

Contact: Franziska.Griese@dlr.de


