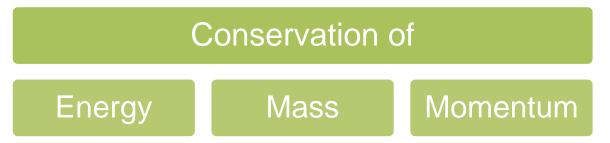
HYBRID METHODS FOR POISSON AND STOKES

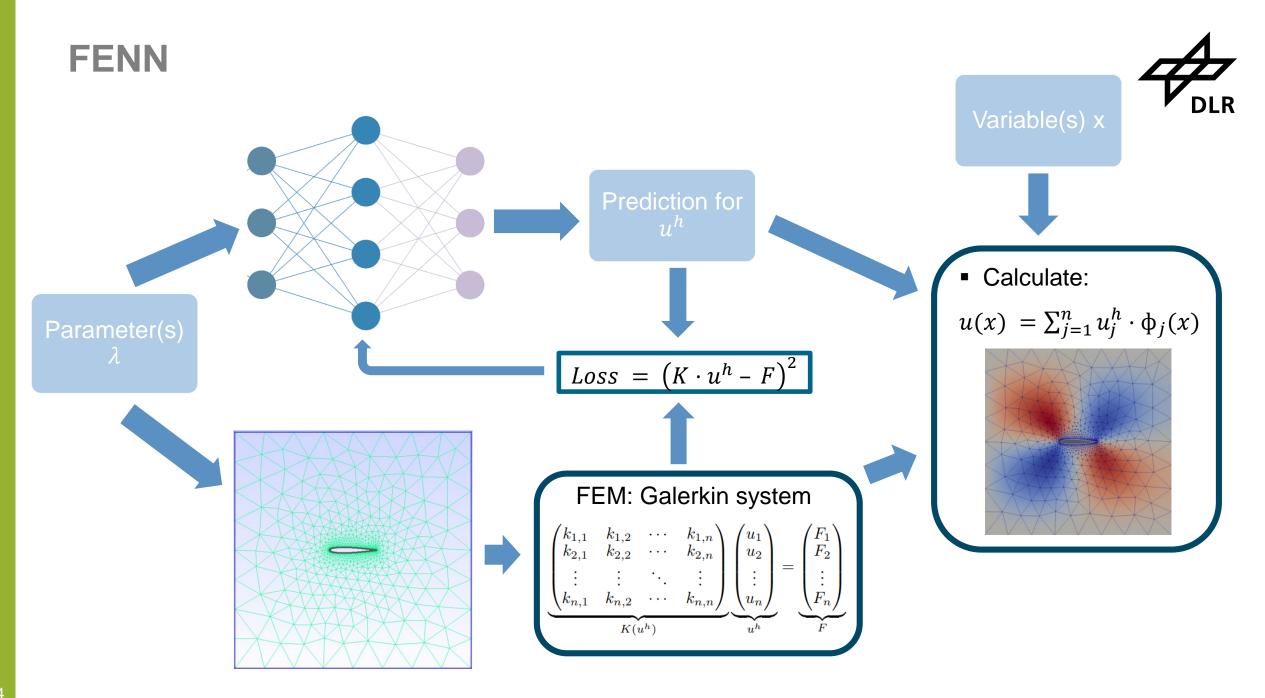
Franziska Griese (SC-HPC) 8th WAW ML, Jena 2022



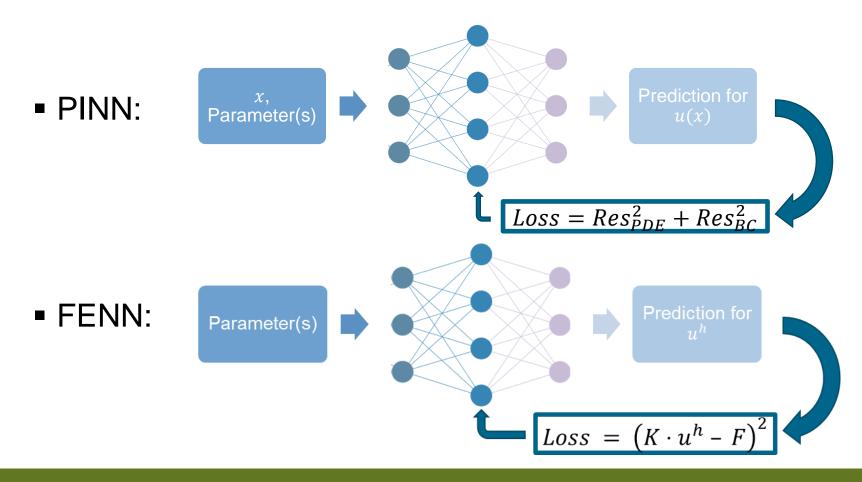
Motivation

- Technical systems are becoming more and more complicated, making modeling them more complex and expensive
- \rightarrow use NN's to build surrogate models

 By data-driven approaches some natural laws are not or only poorly considered


 \rightarrow Hybrid methods, which combine physical knowledge and NN's

FENN (Finite Element Neural Network)

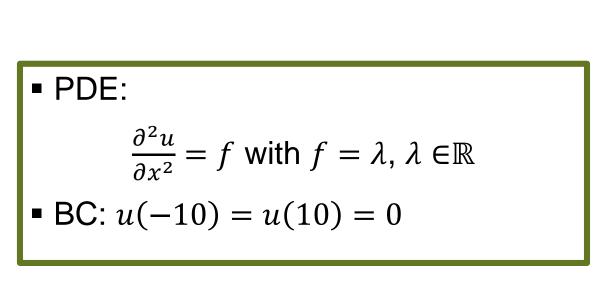

- Combines classical finite element method with a NN
- Use best of both worlds

FEM	NN
Sparsity patterns: because of locality of elements	Fast prediction after training
No multi-objective optimization \rightarrow naturally including BC,	Generalizable
Numerical theory of errors can be used	

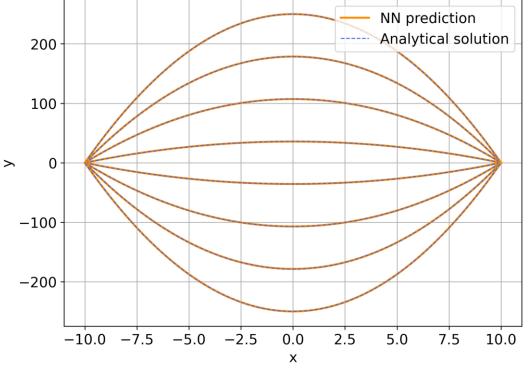
Physical knowledge in form of a PDE is used

Comparison to PINN's

FENN advantages:

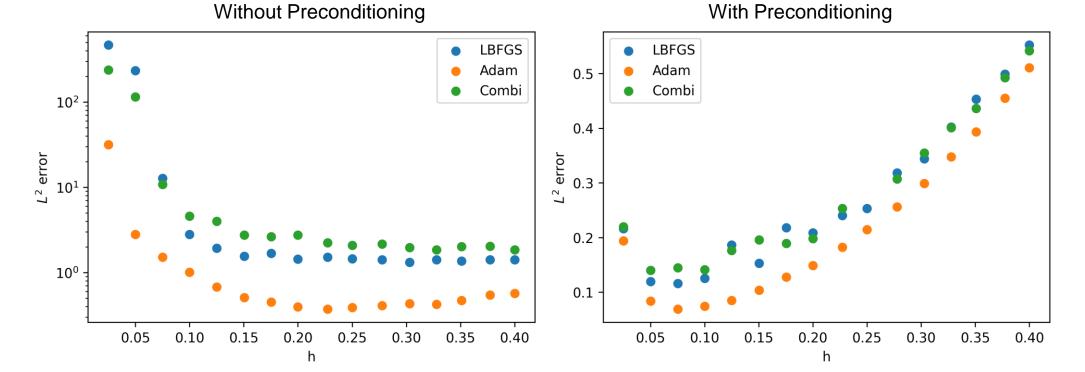

- Numerical theory of errors can be used
- Sparsity patterns
- No multi-objective optimization

Main difference: loss function


- PINN: residuum of PDE using automatic differentiation
- FENN: residuum of FEM's Galerkin system

1D Poisson Problem

PDE-Solution for training set


FENN - Poisson

- First issue: loss converges to local minima
 - K² squares condition, use loss function with residuum as minimum
- Second issue: bad condition of stiffness matrix K
 - Preconditioning with Cholesky decomposition $K = L \cdot L^T$

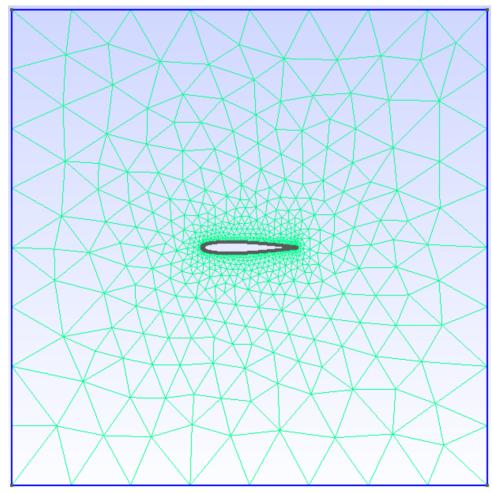
$$(K \cdot u^{n} - F)^{-}$$

$$\rightarrow u^{h^{T}} \cdot (0.5 \cdot K \cdot u^{h} - F)$$

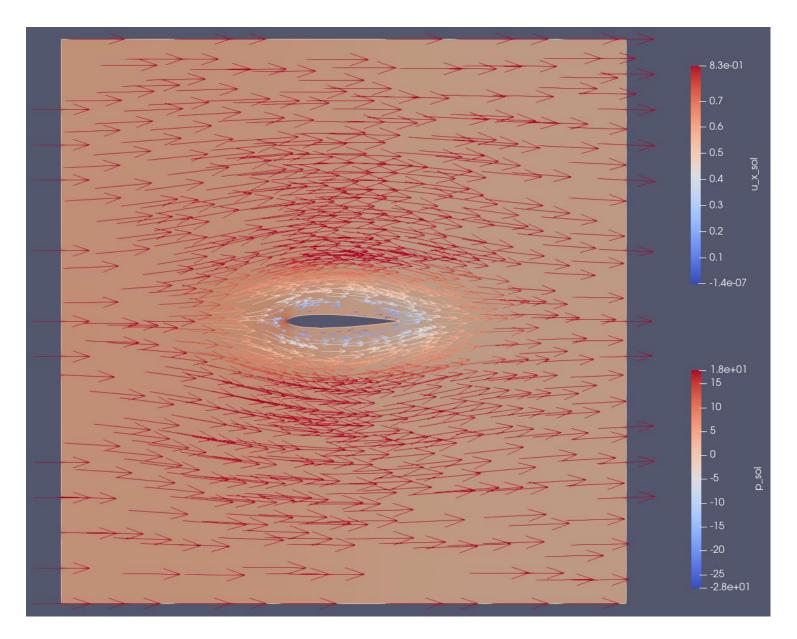
<u>ر</u>

Poisson – Comparison FENN & PINN

	FENN	PINN
Convergence	Good results for different NN-architectures and optimizers	
Training time	~ 1 sec	~ 3 min
Generalization Inside training interval	0 -25 -50 -50 -75 -100 -125 -150 -	$\begin{array}{c} 0 \\ -25 \\ -50 \\ -50 \\ -75 \\ -100 \\ -125 \\ -150 \\ -175 \\ -200 \\ -10.0 \\ -7.5 \\ -5.0 \\ -2.5 \\ 0.0 \\ 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ -2.5 \\ 0.0 \\ 2.5 \\ 5.0 \\ 7.5 \\ 10.0 \\ -2.5 \\ 0.0 \\ -2.5 \\$
Outside training interval	2000 1500 500 	2000 1500 1000 500 0 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0


2D Stokes flow around an airfoil

PDE:


$$\nabla \cdot u = 0,$$
$$\nabla p - \Delta u = 0,$$

- with u the velocity and p the pressure
- BC: Dirichlet at left, top, bottom; Neumann at right; no-slip at airfoil
- Saddle point problem
- Even for FEM no easy problem

Mesh around NACA 0012 airfoil.

2D Stokes flow around an airfoil

 Constructed fully differentiable FEM-Solver for Stokes in PyTorch

 Used Taylor-Hood elements to construct Galerkin system

FENN - Stokes

- Ongoing process
- Indefinite stiffness matrix \rightarrow both tricks used for Poisson equation don't work
- Other preconditioners are needed
- But system differentiable for every possible parameter

Outlook

- Solve Stokes flow around airfoil with FENN and PINN
- Airfoil with parameterizable angle of attack
- Inverse problems e.g. state estimation: sensors at airfoil want to measure angle of attack
- Uncertainty Quantification

Thank you for your attention! Questions?

Contact: Franziska.Griese@dlr.de

