elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing

Dong, Yuting and Fan, Libei and Zhao, Ji and Huang, Shusong and Geiß, Christian and Wang, Lizhe and Taubenböck, Hannes (2022) Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing. Journal of Hydrology, 614 (Part B), p. 128580. Elsevier. doi: 10.1016/j.jhydrol.2022.128580. ISSN 0022-1694.

Full text not available from this repository.

Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0022169422011507

Abstract

Small water bodies and their temporal changes are, especially in urban areas, closely related to people’s daily life and they have an impact on the living environment. For small water bodies mapping with optical remote sensing images, it is challenging to establish a balance between reducing incorrect water detection and increasing the integrity of water extraction. For time-series application, the temporal variability of the spectral information is also challenging for the widely used threshold methods, which are frequently solely based on spectral analysis. In this work we propose a spatial information integrated small water bodies mapping (SWM) method to achieve a complete and accurate extraction and temporal change monitoring of small water bodies in complex urban environments. Our strategy is to make use of the spatial contextual information to account for the indistinguishability of small water bodies in spectral information. The roughness of the water index is calculated to enhance the contrast between water bodies and other thematic classes eventually present in the imagery. The proposed SWM was applied to different water indexes with an automatic threshold determination. We tested the effectiveness of the proposed algorithm using Landsat and Sentinel-2 multispectral data from three different urban environments (Shanghai, Guangzhou, and Wuhan in China) which include a variety of river courses and lakes. Nantan Lake of China is selected as a representative experimental area to test the SWM method by generating the inter- and intra-year water results. Overall accuracy (OA), F1 score (F1), producer’s accuracy (PA), and user’s accuracy (UA) were used to quantitatively evaluate the accuracy of the algorithm. Compared with the four state-of-the-art water detection methods (supervised random forest classification, hierarchical clustering, multi-band threshold, and modified normalized difference water index (MNDWI)), the proposed SWM algorithm achieves better water extraction performance. Small water bodies are found to be extracted more completely and incorrect water extractions are alleviated. The overall accuracy of the SWM algorithm achieves an average of approx. 97% (OA) and 0.95 (F1). The long-time sequence (from 2007 to 2021) and the short-time interval (monthly results of the year 2020) of the water extraction results by the SWM agree well with the ground truth data. The mean absolute area deviations between the water body extraction results of the SWM algorithm and ground truth is significantly smaller than that of the Global Surface Water dataset developed by the European Commission's Joint Research Centre (3.5% vs 49.0% for annual results and 6.0% vs 35.0% for monthly results).

Item URL in elib:https://elib.dlr.de/191421/
Document Type:Article
Title:Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Dong, YutingUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Fan, LibeiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zhao, JiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Huang, ShusongUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Geiß, ChristianUNSPECIFIEDhttps://orcid.org/0000-0002-7961-8553UNSPECIFIED
Wang, LizheUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Taubenböck, HannesUNSPECIFIEDhttps://orcid.org/0000-0003-4360-9126UNSPECIFIED
Date:November 2022
Journal or Publication Title:Journal of Hydrology
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:614
DOI:10.1016/j.jhydrol.2022.128580
Page Range:p. 128580
Publisher:Elsevier
ISSN:0022-1694
Status:Published
Keywords:surface water mapping, small water bodies, water index, Sentinel-2, Landsat, spatial information
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Geo Risks and Civil Security
Deposited By: Geiß, Christian
Deposited On:22 Dec 2022 13:41
Last Modified:29 Mar 2023 00:03

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.