elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing

Dong, Yuting und Fan, Libei und Zhao, Ji und Huang, Shusong und Geiß, Christian und Wang, Lizhe und Taubenböck, Hannes (2022) Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing. Journal of Hydrology, 614 (Part B), Seite 128580. Elsevier. doi: 10.1016/j.jhydrol.2022.128580. ISSN 0022-1694.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0022169422011507

Kurzfassung

Small water bodies and their temporal changes are, especially in urban areas, closely related to people’s daily life and they have an impact on the living environment. For small water bodies mapping with optical remote sensing images, it is challenging to establish a balance between reducing incorrect water detection and increasing the integrity of water extraction. For time-series application, the temporal variability of the spectral information is also challenging for the widely used threshold methods, which are frequently solely based on spectral analysis. In this work we propose a spatial information integrated small water bodies mapping (SWM) method to achieve a complete and accurate extraction and temporal change monitoring of small water bodies in complex urban environments. Our strategy is to make use of the spatial contextual information to account for the indistinguishability of small water bodies in spectral information. The roughness of the water index is calculated to enhance the contrast between water bodies and other thematic classes eventually present in the imagery. The proposed SWM was applied to different water indexes with an automatic threshold determination. We tested the effectiveness of the proposed algorithm using Landsat and Sentinel-2 multispectral data from three different urban environments (Shanghai, Guangzhou, and Wuhan in China) which include a variety of river courses and lakes. Nantan Lake of China is selected as a representative experimental area to test the SWM method by generating the inter- and intra-year water results. Overall accuracy (OA), F1 score (F1), producer’s accuracy (PA), and user’s accuracy (UA) were used to quantitatively evaluate the accuracy of the algorithm. Compared with the four state-of-the-art water detection methods (supervised random forest classification, hierarchical clustering, multi-band threshold, and modified normalized difference water index (MNDWI)), the proposed SWM algorithm achieves better water extraction performance. Small water bodies are found to be extracted more completely and incorrect water extractions are alleviated. The overall accuracy of the SWM algorithm achieves an average of approx. 97% (OA) and 0.95 (F1). The long-time sequence (from 2007 to 2021) and the short-time interval (monthly results of the year 2020) of the water extraction results by the SWM agree well with the ground truth data. The mean absolute area deviations between the water body extraction results of the SWM algorithm and ground truth is significantly smaller than that of the Global Surface Water dataset developed by the European Commission's Joint Research Centre (3.5% vs 49.0% for annual results and 6.0% vs 35.0% for monthly results).

elib-URL des Eintrags:https://elib.dlr.de/191421/
Dokumentart:Zeitschriftenbeitrag
Titel:Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dong, YutingNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fan, LibeiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhao, JiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Huang, ShusongNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Wang, LizheNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:November 2022
Erschienen in:Journal of Hydrology
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:614
DOI:10.1016/j.jhydrol.2022.128580
Seitenbereich:Seite 128580
Verlag:Elsevier
ISSN:0022-1694
Status:veröffentlicht
Stichwörter:surface water mapping, small water bodies, water index, Sentinel-2, Landsat, spatial information
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Geiß, Christian
Hinterlegt am:22 Dez 2022 13:41
Letzte Änderung:29 Mär 2023 00:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.