Cattoi, Alessandro and Bruzzone, Lorenzo and Hänsch, Ronny (2022) Transcoding-based pre-training of semantic segmentation networks for PolSAR images. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, pp. 1-5. European Conference on Synthetic Aperture Radar (EUSAR), 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/abstract/document/9944362
Abstract
Pre-training deep neural networks uses a proxy task to learn representative features that are transferable to a different problem. We investigate how semantic segmentation networks for PolSAR images benefit from pre-training on a transcoding task which translates PolSAR data into optical images. We compare multiple approaches ranging from a simple regression network up to a cycle-GAN. All pre-training methods lead to significant gains in classification accuracy. Surprisingly, the cycle-GAN as the most sophisticated architecture evaluated here leads to the worst results. The best results are achieved by the conditional GAN but closely followed by the much simpler regression network.
Item URL in elib: | https://elib.dlr.de/191317/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Transcoding-based pre-training of semantic segmentation networks for PolSAR images | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2022 | ||||||||||||||||
Journal or Publication Title: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Deep Learning, Self-supervised Learning | ||||||||||||||||
Event Title: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||
Event Location: | Leipzig, Germany | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 2022-07-25 - 2022-07-27 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||
Deposited By: | Hänsch, Ronny | ||||||||||||||||
Deposited On: | 01 Dec 2022 13:22 | ||||||||||||||||
Last Modified: | 13 Jan 2023 14:47 |
Repository Staff Only: item control page