Cattoi, Alessandro und Bruzzone, Lorenzo und Hänsch, Ronny (2022) Transcoding-based pre-training of semantic segmentation networks for PolSAR images. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 1-5. European Conference on Synthetic Aperture Radar (EUSAR), 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9944362
Kurzfassung
Pre-training deep neural networks uses a proxy task to learn representative features that are transferable to a different problem. We investigate how semantic segmentation networks for PolSAR images benefit from pre-training on a transcoding task which translates PolSAR data into optical images. We compare multiple approaches ranging from a simple regression network up to a cycle-GAN. All pre-training methods lead to significant gains in classification accuracy. Surprisingly, the cycle-GAN as the most sophisticated architecture evaluated here leads to the worst results. The best results are achieved by the conditional GAN but closely followed by the much simpler regression network.
elib-URL des Eintrags: | https://elib.dlr.de/191317/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Transcoding-based pre-training of semantic segmentation networks for PolSAR images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2022 | ||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Deep Learning, Self-supervised Learning | ||||||||||||||||
Veranstaltungstitel: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||
Veranstaltungsort: | Leipzig, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 25 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 27 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||||||||||
Hinterlegt am: | 01 Dez 2022 13:22 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags