Hellekes, Jens und Kehlbacher, Ariane und López Díaz, María und Merkle, Nina Marie und Henry, Corentin und Kurz, Franz und Heinrichs, Matthias (2022) Parking space inventory from above: Detection on aerial images and estimation for unobserved regions. IET Intelligent Transport Systems, Seiten 1-13. Institution of Engineering and Technology (IET). doi: 10.1049/itr2.12322. ISSN 1751-956X.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/itr2.12322
Kurzfassung
Parking is a vital component of today's transportation system and descriptive data are therefore of great importance for urban planning and traffic management. However, data quality is often low: managed parking places may only be partially inventoried, or parking at the curbside and on private ground may be missing. This paper presents a processing chain in which remote sensing data and statistical methods are combined to provide parking area estimates. First, parking spaces and other traffic areas are detected from aerial imagery using a convolutional neural network. Individual image segmentations are fused to increase completeness. Next, a Gamma hurdle model is estimated using the detected parking areas and OpenStreetMap and land use data to predict the parking area adjacent to streets. We find a systematic relationship between the road length and type and the parking area obtained. We suggest that our results are informative to those needing information on parking in structurally similar regions.
elib-URL des Eintrags: | https://elib.dlr.de/191145/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Parking space inventory from above: Detection on aerial images and estimation for unobserved regions | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 29 Dezember 2022 | ||||||||||||||||||||||||||||||||
Erschienen in: | IET Intelligent Transport Systems | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1049/itr2.12322 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-13 | ||||||||||||||||||||||||||||||||
Verlag: | Institution of Engineering and Technology (IET) | ||||||||||||||||||||||||||||||||
ISSN: | 1751-956X | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Aerial imagery; Deep learning; Image segmentation; Parking space detection; On-street parking; Bayes methods; OpenStreetMap | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - VMo4Orte - Vernetzte Mobilität für lebenswerte Orte | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof , Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Institut für Verkehrsforschung > Mobilität und urbane Entwicklung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Hellekes, Jens | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 29 Nov 2022 14:24 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 28 Apr 2023 16:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags