elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Residence time of inertial particles in 3D thermal convection: Implications for magma reservoirs.

Patocka, Vojtech und Tosi, Nicola und Calzavarini, Enrico (2022) Residence time of inertial particles in 3D thermal convection: Implications for magma reservoirs. Earth and Planetary Science Letters, 591. Elsevier. doi: 10.1016/j.epsl.2022.117622. ISSN 0012-821X.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0012821X22002588

Kurzfassung

The dynamic behaviour of crystals in convecting fluids determines how magma bodies solidify. In particular, it is often important to estimate how long crystals stay in suspension in the host liquid before being deposited at its bottom (or top, for light crystals and bubbles of volatiles). We perform a systematic 3D numerical study of particle-laden Rayleigh-Bénard convection, and derive a robust model for the particle residence time. For Rayleigh numbers higher than 107, inertial particles' trajectories exhibit a monotonic transition from fluid tracer-like to free-fall dynamics, the control parameter being the ratio between particle Stokes velocity and the mean amplitude of the fluid velocity. The average settling rate is proportional to the particle Stokes velocity in both the end-member regimes, but the distribution of residence times differs markedly from one to the other. For lower Rayleigh numbers (< 10_7), an interaction between large-scale circulation and particle motion emerges, increasing the settling rates on average. Nevertheless, the mean residence time does not exceed the terminal time, i.e. the settling time from a quiescent fluid, by a factor larger than four. An exception are simulations with only a slightly super-critical Rayleigh number (∽ 10_4), for which stationary convection develops and some particles become trapped indefinitely. 2D simulations of the same problem overestimate the flow-particle interaction – and hence the residence time – for both high and low Rayleigh numbers, which stresses the importance of using 3D geometries for simulating particle-laden flows. We outline how our model can be used to explain the depth changes of crystal size distribution in sedimentary layers of magmatic intrusions that are thought to have formed via settling of a crystal cargo, and discuss how the micro-structural observations of solidified intrusions can be used to infer the past convective velocity of magma.

elib-URL des Eintrags:https://elib.dlr.de/191070/
Dokumentart:Zeitschriftenbeitrag
Titel:Residence time of inertial particles in 3D thermal convection: Implications for magma reservoirs.
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Patocka, Vojtechvojtech.patocka (at) dlr.dehttps://orcid.org/0000-0002-3413-6120NICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Calzavarini, Enricoenrico.calzavarini (at) polytech-lille.frhttps://orcid.org/0000-0002-9962-0677NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:Earth and Planetary Science Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:591
DOI:10.1016/j.epsl.2022.117622
Verlag:Elsevier
ISSN:0012-821X
Status:veröffentlicht
Stichwörter:Turbulent convection, crystal settling, magma chamber
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Tosi, Dr. Nicola
Hinterlegt am:29 Nov 2022 11:24
Letzte Änderung:29 Nov 2022 11:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.