Weilharter, Rafael und Fraundorfer, Friedrich (2022) ATLAS-MVSNet: Attention Layers for Feature Extraction and Cost Volume Regularization in Multi-View Stereo. In: 26th International Conference on Pattern Recognition, ICPR 2022, Seiten 3557-3563. 26TH International Conference on Pattern Recognition, 2022-08-21 - 2022-08-25, Montreal. doi: 10.1109/ICPR56361.2022.9956633. ISBN 978-1-66549-062-7. ISSN 1051-4651.
PDF
402kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9956633
Kurzfassung
We present ATLAS-MVSNet, an end-to-end deep learning architecture relying on local attention layers for depth map inference from multi-view images. Distinct from existing works, we introduce a novel module design for neural networks, which we termed hybrid attention block, that utilizes the latest insights into attention in vision models. We are able to reap the benefits of attention in both, the carefully designed multi-stage feature extraction network and the cost volume regularization network. Our new approach displays significant improvement over its counterpart based purely on convolutions. While many state-of-the-art methods need multiple high-end GPUs in the training phase, we are able to train our network on a single consumer grade GPU. ATLAS-MVSNet exhibits excellent performance, especially in terms of accuracy, on the DTU dataset. Furthermore, ATLAS-MVSNet ranks amongst the top published methods on the online Tanks and Temples benchmark.
elib-URL des Eintrags: | https://elib.dlr.de/190995/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | ATLAS-MVSNet: Attention Layers for Feature Extraction and Cost Volume Regularization in Multi-View Stereo | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | August 2022 | ||||||||||||
Erschienen in: | 26th International Conference on Pattern Recognition, ICPR 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/ICPR56361.2022.9956633 | ||||||||||||
Seitenbereich: | Seiten 3557-3563 | ||||||||||||
ISSN: | 1051-4651 | ||||||||||||
ISBN: | 978-1-66549-062-7 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | end-to-end deep learning architecture, ocal attention layers, multi-view images | ||||||||||||
Veranstaltungstitel: | 26TH International Conference on Pattern Recognition | ||||||||||||
Veranstaltungsort: | Montreal | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 21 August 2022 | ||||||||||||
Veranstaltungsende: | 25 August 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||
Hinterlegt am: | 06 Dez 2022 17:50 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags