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Abstract—We present ATLAS-MVSNet, an end-to-end deep
learning architecture relying on local attention layers for depth
map inference from multi-view images. Distinct from existing
works, we introduce a novel module design for neural networks,
which we termed hybrid attention block, that utilizes the latest
insights into attention in vision models. We are able to reap the
benefits of attention in both, the carefully designed multi-stage
feature extraction network and the cost volume regularization
network. Our new approach displays significant improvement
over its counterpart based purely on convolutions. While many
state-of-the-art methods need multiple high-end GPUs in the
training phase, we are able to train our network on a single
consumer grade GPU. ATLAS-MVSNet exhibits excellent per-
formance, especially in terms of accuracy, on the DTU dataset.
Furthermore, ATLAS-MVSNet ranks amongst the top published
methods on the online Tanks and Temples benchmark.

I. INTRODUCTION

Multi-View Stereo (MVS) aims to reconstruct a dense 3D
model of an observed scene from a series of images with
their respective calibrated camera parameters alone. While
traditional methods [7], [8], [25], using hand-crafted simi-
larity metrics, have long been dominate in the field, recent
deep-learning approaches are achieving superior accuracy and
completeness on many MVS benchmarks [1], [17], [38]. This
can be attributed to the introduction of Convolutional Neural
Networks (CNNs) which are able to capture local features
very well. Propelled by the computational power of modern
GPUs, many of these deep-learning methods [10], [36], [37]
follow a similar concept: Firstly, dense features are computed
via feature extraction network. Secondly, these features are
aggregated to form a cost volume utilizing the plane sweep
algorithm [5]. Finally, the cost volume is regularized to
estimate the final output in form of a depth map.

While these methods are able to achieve impressive results,
accurate matching problems still remain in low-textured, repet-
itive, specular and reflective regions. A possible reason for this
is that context-aware features have not been leveraged well
enough yet. However, with the advent of the attention [28]
mechanism, which was initially proposed for natural language
processing, the computer vision community has been offered
a new tool. Attention captures content-based, spatial-aware
information and has already enjoyed rich success in the tasks
of object detection [30] and image classification [12]. Nev-
ertheless, these works rely on global attention layers, which
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Fig. 1: Qualitative comparison of scan77 on the DTU dataset.
The baseline network (c), relying purely on convolutional
layers, struggles with low-textured regions. Our network (d),
enhancing (c) with hybrid attention blocks, is able to accu-
rately reconstruct the problematic regions.

attend to all spatial locations of an input and are therefore
limited to a small input. To combat this issue, Ramachandran
et al. [21] introduce the local self-attention layer, which
extends the use of attention to larger inputs, boosting the
convolutional baseline for the aforementioned tasks.

In this paper, we propose ATLAS-MVSNet, a straightfor-
ward network which utilizes local Attention Layers (ATLAS)
for both, the feature extraction and the 3D regularization to
significantly boost the performance over vanilla CNN solutions
(see Figure 1). Our main contributions can be summarized as
follows:

• We introduce a multi-stage feature extraction network



with hybrid attention blocks (HABs) to extract dense
features and capture important information for the later
matching and depth inference tasks.

• We extend the local 2D attention layers proposed by [26]
to 3D in order to be able to adopt our HABs for the 3D
regularization network.

• We produce clean depth maps prior to applying any
filtering technique with an end-to-end neural network that
is fully trainable on a single consumer grade GPU with
only 11GB of memory.

• We perform extensive evaluations to show that our
ATLAS-MVSNet ranks amongst the top methods on the
DTU and the more challenging Tanks and Temples (TaT)
benchmarks.

II. RELATED WORK

The computer vision community has been researching MVS
methods for decades. Starting with traditional methods such
as Gipuma [8] or COLMAP [25] handcrafted features were
extracted and matched in order to estimate a dense 3D rep-
resentation of the observed environment. Although these ap-
proaches perform well in a multitude of scenarios they require
a significant amount of processing time and are not suitable for
non-Lambertian, low-textured or texture-less regions, usually
resulting in poor performance in terms of completeness.

In recent years, deep learning methods have accomplished
significant improvements over their traditional counterparts
in many vision tasks [6], [9], [11], [18], [22]. Inspired by
their success, learning-based MVS methods picked up on
this idea with promising performances. First approaches [13],
[14] utilize a volumetric scene representation where the cost
volume is built upon. However, since the memory requirements
grow proportionally to scene size, only small scale recon-
structions are possible. To lift this restriction, MVSNet [36]
introduces a nowadays widely adapted pipeline that produces a
depth map for every reference image: First off, dense features
are computed for a fixed number of overlapping images.
Multiple features are then mapped into one cost volume
using a variance-based cost metric. The cost volume is then
regularized and yields a depth estimate via regression. In this
manner, memory consumption is only related to the size of
the input image. Nevertheless, MVSNet is quickly brought to
its limits when it comes to higher resolution images.

To address this issue, different approaches have been taken:
R-MVSNet [37] adopts gated recurrent units (GRUs) to
regularize the cost volume in a sequential manner, trading
decreased memory requirements for increased runtime. Fast-
MVSNet [40] uses a sparse-to-dense approach and first only
estimates a sparse but high-resolution depth map. CasMVS-
Net [10] is able to reduce the depth dimension of the cost
volume by predicting the depth in a coarse-to-fine manner.

Although more recent approaches [4], [32], [34], who built
upon these insights, achieve impressive results, there is still
room for improvement regarding the reconstruction quality.

In the task of object detection and image classification,
the attention mechanism has been successful in achieving

gains by augmenting convolutional models with content-based
interactions [3]. This motivated several works [19], [41] to
capitalize on the new technique also in MVS. A first attempt to
exploit the local attention layer proposed by [21] is performed
by Yu et al. [39]. In contrast to their work, we utilize several
of the latest insights into attention in vision models [21], [27]
and design the hybrid attention block that we take advantage
of throughout ATLAS-MVSNet.

III. METHOD

In this section, we introduce the detailed architecture of
ATLAS-MVSNet with its novel components. We first extract
features at multiple stages with decreasing resolution. After-
wards, we generate the depth at the coarsest resolution and
utilize the cascading cost volume formulation [10] to predict
the subsequent depth maps in a coarse-to-fine manner. An
overview of our network design is shown in Figure 2.

A. Feature Extraction

For feature extraction we design a multi-stage network
adopting a U-NET [23] architecture. At the beginning, we
apply 4 convolutional layers, where the stride of layer 1 is set
to 2. Afterwards, we pass the obtained feature map through
our 2D HAB at stage 0.

2D Hybrid Attention Block Our HAB is constructed as a
residual block that uses a hybrid combination of convolutional
and local attention layers (see Figure 3). To reduce the memory
requirement for the local attention layer [21], the input first
passes through a convolutional layer with stride 2 followed
by a group normalization [33] (GN) and ReLU layer. The
realization of the local attention layer is depicted in Figure 4:
Similar to a convolution, the input is a local region R of size
s × s centered around the pixel of interest xij. From R the
pixel output yij can be calculated via softmax operation σ(·):

yij =
∑

a,b∈R

σab(q
⊤
ijkab)vab, (1)

where queries qij = Wqxij, keys kab = Wkxab and
values vab = Wvxab are learnable linear transformations
with their respective weight matrices Wq , Wk and Wv . A
drawback of this formulation is that no positional information
is encoded, which leads to permutation equivariance, limiting
the performance for vision tasks. Hence, the relative positional
embedding [26] is introduced by adding learnable parameters
to the keys. The relative distance is factorized across dimen-
sions using half of the dimension of the output channel for
encoding the row direction and the other half for encoding
the column direction. In practice this can be accomplished by
arranging the 2D encodings as a vector rab resulting in:

yij =
∑

a,b∈R

σab(qij
⊤(kab + rab))vab. (2)

In this manner the attention layer can be integrated into the
network just like a convolutional layer. Distinct from the latter,
the aggregation is done in a more entangled way with convex
combinations of value vectors and the softmax operation.



Fig. 2: Overview of the proposed ATLAS-MVSNet architecture: At first, a multi-stage feature extraction network utilizing 2D
HABs is applied to a given set of images. Features at different scales are aggregated into a cost volume through homography
warping. The cost volume at the coarsest scale (stage n− 1) is regularized by a 3D CNN followed by a 3D HAB and yields
a depth estimate via regression. The estimate is used to initialize the cost volumes of the subsequent stage. This process is
repeated for n stages to obtain the final depth map.

Fig. 3: Hybrid attention block overview: We adopt a residual
block architecture where the input first passes through a
convolutional layer with stride 2 followed by a GN and ReLU
layer. We then apply a local attention layer with LayerScale.

Fig. 4: Local attention layer details for a spatial extend of s =
3: In contrast to a convolutional layer with 1 transformation,
we learn 3 distinct transformations for query, keys and values.

As a normalization strategy we apply the LayerScale as
proposed by [27]. Formally, this is done by multiplying a
diagonal matrix to the output Xatt after the attention layer:

Y = diag(λ1, ..., λn)×Xatt +Xdown, (3)

where Y is the final output of the HAB and Xdown is the
down sampled input. The parameters λ1 to λn are learnable
weights.

The last output at the lowest scale yields the coarsest feature
map. For the following stages we upscale the previous HAB
output by a factor of 2 and concatenate the features with the
current stage HAB output. An additional convolutional layer
is applied after concatenation.

B. Cost Volume Construction

Following previous architectures [10], [35], [37], we con-
struct the cost volume by warping the obtained feature maps
into fronto-parallel planes in the reference camera frustum.
The warping is defined by the homography:

Hi(d) = Ki ·Ri ·
(
I − (t0 − ti) · n⊤

0

d

)
·R⊤

0 ·K⊤
0 , (4)

where Hi(d) is the homography between the ith feature map
and the reference feature map at depth d. The parameters
Ki, Ri, ti refer to the camera intrinsics and extrinsics with
index 0 indicating the reference view, n0 is the principle axis
of the reference camera and I is the identity matrix. For the
aggregation of multiple feature volumes to one cost volume,
the variance-based cost metric is employed to accommodate
an arbitrary number of input feature volumes.

We need to perform these operations in each stage of our
network to obtain a cost volume of the corresponding scale.



However, as the GPU memory requirements would increase
cubically for every stage we follow [10] and only cover the
full depth range in the coarsest stage which has the smallest
cost volume resolution. The ensuing cost volumes can then
be built upon a narrower depth range based on the previous
prediction using the cascading cost volume formulation. This
allows us to use a fine plane interval while keeping the memory
consumption in check.

C. Cost Volume Regularization

As stated previously, we predict the depth maps in a coarse-
to-fine pattern. To get a depth map from a cost volume, we
pass it through a 3D regularization network and regress the
depth via soft argmin operation [16]:

soft argmin :=

dmax∑
d=1

d× σ(−cd), (5)

where dmax is the maximum depth value, cd is the predicted
cost and σ(·) is again the softmax operation.

Our 3D regularization networks consists of 5 blocks of two
3D convolutional layers with a residual connection followed
by a 3D HAB.

3D Hybrid Attention Block The design principle is the
same as depicted in Figure 3 but without the down sampling
as we want to keep the cost volume at a constant scale.
We can extend the local 2D attention layers in Figure 4 by
expanding the weight matrices Wq , Wk and Wv into the third
dimension. In order to extend the positional encoding to 3D,
we need to add another vector of learnable parameters for
the depth direction. This implies that we now factorize across
3 dimensions, each encoding embedded in 1

3 of the output
channel dimension. Again, as was the case with the 2D HAB,
the intention of 3D HAB is to capture positionally relevant
context information.

We employ our 3D HAB only at the coarsest stage for
the following 2 reasons: 1) Unfortunately, the HAB comes
at the cost of increased GPU memory consumption as we
have to learn a distinct transformation for each, query, key and
value. This leads to an exponential increase of GPU memory
requirements. 2) It is most critical to get a correct depth
estimate in the coarsest stage, which covers the full depth
range, as this prediction will get propagated through the other
stages.

In this manner, we are able to produce a high quality depth
map as direct output of our network (see Figure 5).

D. Loss Function

ATLAS-MVSNet with n stages produces n−1 intermediate
outputs and 1 final depth prediction. We apply a multi-
scale loss over all outputs by calculating the mean absolute
difference between ground truth and predicted depth map in
every stage:

l =
n−1∑
k=0

λk · ∥Dk,gt −Dk,pred∥1, (6)

Fig. 5: Example depth map output of our network. We are able
to produce a high quality depth map even before applying any
filtering technique.

where λk is the loss weight which we reduce by a factor of 1
2

in every stage in order to account for the different scale levels.

IV. IMPLEMENTATION

We set the number of stages in our final network to 5.
The reasoning behind this decision is twofold: 1) Memory
efficiency: As only the coarsest stage needs to cover the full
depth range of the image, we can set a lower number of depth
hypothesis in subsequent stages resulting in a smaller cost
volume size. 2) Result accuracy: Empirically we found that 5
stages yield the better results over 4 stages (see Section V-C).

From the coarsest stage 4 to the finest stage 0 we set the
number of depth hypothesis to 32, 8, 8, 8 and 4 respectively.
Throughout the network we normalize each layer with GN.

A. Training

We train ATLAS-MVSNet on the DTU dataset [1] and on
the BlendedMVS dataset [38]. In case of the DTU dataset,
data is captured under the same lab conditions for every
scene and ground truth is only available in form of laser
point clouds. Therefore we utilize the depth maps provided
by MVSNet [36] which are generated from the point clouds
via screened Poisson surface reconstruction [15]. In order to
introduce more variety into our training data, we also include
the BlendedMVS dataset. The dataset contains various scenes
including cities, architectures, sculptures and small objects. It
has been shown in [38] that this additional data can help to
improve the network performance and generalization on more
complex scenes.



We use Adam optimizer [2] with β1 = 0.9 and β2 = 0.999
and initialize the learning rate with 0.001. The learning rate
is reduced by a factor of 0.5 during training at epochs 10, 12
and 14. We fix the number of input images to 3 with an image
resolution of 1600× 1152 and train for a total of 18 epochs.
Our network is trainable end-to-end on a single consumer
grade GPU with 11GB memory (e.g. Nvidia GeForce GTX
1080 Ti, Nvidia GeForce RTX 2080 Ti).

B. Point Cloud Fusion

As our network processes the final cost volume at 1
4 of the

input resolution, we upscale the depth map by a factor of 2
before projecting every pixel into 3D space to obtain a denser
point cloud. However, some pixels might contain inaccurate
or wrong depth predictions due to occlusions or uncertainties.
Since the same 3D point can be observed from multiple views,
we can filter these inaccuracies by checking the geometric
consistency. This can be done by projecting a reference pixel
pref through its depth dref to pixel pi in a different view and
then back-project pi through di to obtain pproj . The depth is
now 2 view consistent if it satisfies:

∥pref − pproj∥ < τ, (7)

where τ is a threshold value for the back-projection error.
To adapt for the typical case of multiple views, we use the
dynamic consistency checking (DCC) strategy [34] and adjust
τ dynamically. In its essence, this strategy deems an estimated
depth value as accurate and reliable if it has a very low back-
projection error in a few views or a certain consensus in the
majority of views.

V. EXPERIMENTS

We evaluate ATLAS-MVSNet on the well known DTU [1]
and Tanks and Temples [17] benchmarks. We use the full
resolution images and set the number of input images to 5.

A. Evaluation on the DTU Dataset

We evaluate our final model trained on the DTU dataset
in Table I, where our method compares favorably with other
state-of-the-art methods. Accuracy reflects the absolute aver-
age distance for every generated 3D point from the ground
truth point cloud, whereas completeness expresses the integrity
of the reconstruction i.e. the absolute average distance for
every ground truth 3D point from the generated point cloud.
Note, that there is a trade-off between these measurements,
which is dependent on the fusion parameter τ . We find that
our overall score increases when we opt for high accuracy.
To the best of our knowledge, we are the first method to beat
the traditional approach of Gipuma [8] in accuracy.

B. Evaluation on Tanks and Temples

The TaT intermediate benchmark consists of outdoor scenes
captured in a more complex and real setting with varying depth
ranges. We follow recent practices [20], [31] and train our
model on the BlendedMVS dataset in order to achieve better
generalization. The quantitative evaluation of our method can

TABLE I: Quantitative results on the DTU test dataset. All
scores are in mm and represent the mean average distance
(lower is better). Best results are shown in bold and the runner-
ups are underlined.

Method Acc. Comp. Overall
Gipuma [8] 0.283 0.873 0.578
COLMAP [24], [25] 0.400 0.664 0.532
MVSNet [36] 0.396 0.527 0.462
R-MVSNet [37] 0.383 0.452 0.417
CasMVSNet [10] 0.346 0.351 0.348
PatchmatchNet [29] 0.427 0.277 0.352
D2HC-RMVSNET [34] 0.395 0.378 0.386
EPP-MVSNet [20] 0.413 0.296 0.355
AA-RMVSNet [31] 0.376 0.339 0.357
AACVP-MVSNet [39] 0.357 0.326 0.341
AttMVS [19] 0.383 0.329 0.356
LANet [41] 0.320 0.349 0.335
Ours 0.278 0.377 0.327

be found in Table II, where our approach ranks amongst the top
published methods, while keeping runtime and GPU memory
requirements low. Furthermore we compare our method qual-
itatively to EPP-MVSNet [20], ranked highest in Table II, in
Figure 6. We can see that our method produces a low number
of 3D point outliers and generates visually appealing results.

C. Ablation Study

We perform a number of ablation studies on the DTU
dataset to find the ideal hyperparameters for our network and
to validate its novel components in Table III. We train for 16
epochs on the training set and use simple 3-view consistent
filtering, as proposed by [36], with τ = 0.25. In order to be
able to cover the whole depth range of the scene within our
memory budget, we need at least 4 stages. However, in our
experiments we found that setting the number of stages to
n = 5 tends to yield better results.

Compared to the baseline without any attention, we can
see an improvement of the overall score from 0.342 to 0.337
when applying the 2D HAB and to 0.336 when applying
2D and 3D HAB. Our findings conclude that adding the 3D
HAB in addition to the 2D HAB will improve the result,
while increasing the number of attention heads will worsen
it. Usually multiple attention heads are used to learn multiple
distinct representations of the input by partitioning pixel
features into groups [21]. Commonly, this leads to an increase
in performance of the network when using a large channel size.
However, as our network only uses a small channel size of 36,
this is not the case. Finally, we see another slight improvement
in the overall score when applying DCC with a rather strict
threshold, thus trading completeness for accuracy.

VI. CONCLUSION

We have presented ATLAS-MVSNet, a deep learning archi-
tecture that utilizes local attention to achieve superior 3D re-
construction accuracy. In particular, we have proposed the hy-
brid attention block design for 2D, based on the self-attention
layer and extended its application to 3D. In experiments we
have shown that utilizing HABs instead of a vanilla residual



TABLE II: Results on the Tanks and Temples intermediate dataset of state-of-the-art MVS and our method. Precision and
recall is combined as f-score (higher is better). Best results are shown in bold and the runner-ups are underlined.

Method Mean Family Francis Horse LH M60 Panther PG Train Time(ms) Mem.(GB)
COLMAP [24], [25] 42.41 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 - -
MVSNet [36] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - 15.3
R-MVSNet [37] 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 - 6.7
CasMVSNet [10] 56.42 76.36 58.45 46.20 55.53 56.11 54.02 58.17 46.56 792.2 9.5
PatchmatchNet [29] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 505.0 2.9
D2HC-RMVSNET [34] 59.20 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92 - -
EPP-MVSNet [20] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 555.2 8.2
AA-RMVSNet [31] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 - -
AACVP-MVSNet [39] 58.39 78.71 57.85 50.34 52.76 59.73 54.81 57.98 54.94 - -
AttMVS [19] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 - -
LANet [41] 55.70 76.24 54.32 49.85 54.03 56.08 50.82 53.71 50.57 - -
Ours 60.71 77.62 61.94 49.55 61.63 60.04 58.69 63.58 52.59 394.5 2.1
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Fig. 6: Qualitative comparison between EPP-MVSNet and our method on the TaT benchmark. The color indicates points within
a certain threshold distance τ to the ground truth. We can see that our method, despite being lower in f-score, produces far
less outliers and therefore a visually more appealing result.

TABLE III: Ablations on the DTU dataset. H indicates the
number of heads in the attention layers, 2D and 3D indicates
the use of the respective HABs, DCC the use of dynamic
consistency checking.

Planes 2D 3D H DCC Acc. Comp. Overall
32/8/8/8/4 - - - - 0.334 0.349 0.342
16/8/8/4 ✓ ✓ 1 - 0.330 0.349 0.340

16/16/8/8/4 ✓ - 2 - 0.338 0.355 0.346
16/16/8/8/4 ✓ ✓ 2 - 0.335 0.348 0.342
32/8/8/8/4 ✓ ✓ 2 - 0.333 0.348 0.341
32/8/8/8/4 ✓ - 1 - 0.328 0.346 0.337
32/8/8/8/4 ✓ ✓ 1 - 0.328 0.344 0.336
32/8/8/8/4 ✓ ✓ 1 ✓ 0.287 0.381 0.334

blocks can boost the performance of a network qualitatively
and quantitatively. ATLAS-MVSNet demonstrates great results
on public benchmarks and outperforms most other state-of-
the-art methods, while keeping GPU memory requirements
low. This stems from the fact that our feature extraction

network encodes features to 1
4 of the input resolution and

hence the regularization network only has to process cost
volumes of reduced size. A limitation of our work is the
memory requirement of the 3D HAB in the training phase,
which makes its application infeasible in finer stages of the
network. We might tackle this issue in future work in order to
be able to use the HAB also for larger inputs.
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