Hirner, Dominik und Fraundorfer, Friedrich (2022) FCDSN-DC: An Accurate and Lightweight Convolutional Neural Network for Stereo Estimation with Depth Completion. In: 26th International Conference on Pattern Recognition, ICPR 2022, Seiten 3937-3943. 26th International Conference on Pattern Recognition (ICPR), 2022-08-21 - 2022-08-25, Montreal. doi: 10.1109/ICPR56361.2022.9956175. ISBN 978-1-66549-062-7. ISSN 1051-4651.
PDF
333kB |
Offizielle URL: https://www.computer.org/csdl/proceedings-article/icpr/2022/09956175/1IHq3gwrlEk
Kurzfassung
We propose an accurate and lightweight convolutional neural network for stereo estimation with depth completion. We name this method fully-convolutional deformable similarity network with depth completion (FCDSN-DC). This method extends FC-DCNN by improving the feature extractor, adding a network structure for training highly accurate similarity functions and a network structure for filling inconsistent disparity estimates. The whole method consists of three parts. The first part consists of fully-convolutional densely connected layers that computes expressive features of rectified image pairs. The second part of our network learns highly accurate similarity functions between this learned features. It consists of densely-connected convolution layers with a deformable convolution block at the end to further improve the accuracy of the results. After this step an initial disparity map is created and the left-right consistency check is performed in order to remove inconsistent points. The last part of the network then uses this input together with the corresponding left RGB image in order to train a network that fills in the missing measurements. Consistent depth estimations are gathered around invalid points and are parsed together with the RGB points into a shallow CNN network structure in order to recover the missing values. We evaluate our method on challenging real world indoor and outdoor scenes, in particular Middlebury, KITTI and ETH3D were it produces competitive results. We furthermore show that this method generalizes well and is well suited for many applications without the need of further training. The code of our full framework is available at: https://github.com/thedodo/FCDSN-DC
elib-URL des Eintrags: | https://elib.dlr.de/190991/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | FCDSN-DC: An Accurate and Lightweight Convolutional Neural Network for Stereo Estimation with Depth Completion | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | 26th International Conference on Pattern Recognition, ICPR 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/ICPR56361.2022.9956175 | ||||||||||||
Seitenbereich: | Seiten 3937-3943 | ||||||||||||
ISSN: | 1051-4651 | ||||||||||||
ISBN: | 978-1-66549-062-7 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | lightweight convolutional neural network, depth completion, fully-convolutional deformable similarity network | ||||||||||||
Veranstaltungstitel: | 26th International Conference on Pattern Recognition (ICPR) | ||||||||||||
Veranstaltungsort: | Montreal | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 21 August 2022 | ||||||||||||
Veranstaltungsende: | 25 August 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, V - Digitaler Atlas 2.0 | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||
Hinterlegt am: | 06 Dez 2022 17:44 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags