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Abstract—We propose an accurate and lightweight convolu-
tional neural network for stereo estimation with depth com-
pletion. We name this method fully-convolutional deformable
similarity network with depth completion (FCDSN-DC). This
method extends FC-DCNN by improving the feature extractor,
adding a network structure for training highly accurate similarity
functions and a network structure for filling inconsistent disparity
estimates. The whole method consists of three parts. The first
part consists of fully-convolutional densely connected layers that
computes expressive features of rectified image pairs. The second
part of our network learns highly accurate similarity functions
between this learned features. It consists of densely-connected
convolution layers with a deformable convolution block at the
end to further improve the accuracy of the results. After this step
an initial disparity map is created and the left-right consistency
check is performed in order to remove inconsistent points. The
last part of the network then uses this input together with the
corresponding left RGB image in order to train a network that
fills in the missing measurements. Consistent depth estimations
are gathered around invalid points and are parsed together
with the RGB points into a shallow CNN network structure in
order to recover the missing values. We evaluate our method on
challenging real world indoor and outdoor scenes, in particular
Middlebury, KITTI and ETH3D were it produces competitive
results. We furthermore show that this method generalizes well
and is well suited for many applications without the need of
further training. The code of our full framework is available at:
https://github.com/thedodo/FCDSN-DC

I. INTRODUCTION

Stereo vision has been a core problem of computer vision
for many years. In stereo vision a pair of rectified images of the
same scene but with different camera positions is used in order
to extract 3D information. The retrieval of 3D information in
such a manner is used in many important applications such
as robotics, autonomous driving and 3D scene reconstruction.
A traditional stereo method consists of four steps, namely:
feature extraction, matching cost calculation, disparity estima-
tion and disparity refinement. In the past all of this steps have
been done using hand-crafted features and functions, however
recent publications have shown real improvements upon this
traditional methods, like SGM [1] or MGM [2] by replacing
one or several steps using deep learning approaches.

The method FC-DCNN [3] by D. Hirner and F. Fraundorfer
is used as a baseline implementation for this method. There, it
has been shown that replacing the feature extraction step with
a deep learning approach in order to learn highly-dimensional
and expressive features already outperforms traditional stereo
methods such as SGM. We chose this method because of the
lightweight and accurate foundation of the densely connected
scheme that is easy to build upon. In this work we extend upon
this method in two ways: Adding a network structure to learn a
better similarity function between image patches and adding a
network structure that learns to complete the sparse disparity
map instead of using handcrafted post-processing steps. We
end up with a fully trainable method that outperforms the
baseline method of FC-DCNN [3] in all evaluated datasets
and is comparable with other state-of-the art deep-learning
methods. The whole method split into every step is illustrated
in Fig. 1. We further show that this improvement in accuracy
does not impact the generality of the method. We achieve all
of this without the need of costly 3D-convolutions or fully-
connected layers that are used by many popular state-of-the
art methods such as GC-Net [4], PSMNet [5] or MC-CNN-
acrt [6]. That 3D-convolutions are a major bottleneck for stereo
estimation networks has been shown by R. Rahim et al. in their
recent work [41].

The feature extraction part of our network consists of
a densely-connected siamese CNN structure with shared
weights. These highly-dimensional trained features of the left
and right image are then concatenated and passed to the
next part of the network in order to train a more accurate
similarity function. This part of our method consists of five
densely-connected layers with a deformable convolution block
at the end in order to further improve the results. The feature
extraction and the similarity function are trained jointly using
a hinge-loss. These two trained parts are then used in order
to create a cost-volume by writing the similarity measurement
for each possible candidate at every possible image location
along the predefined search direction and stacking them along
the third dimension. This will lead to a cost-volume with the
dimensions H × W × D, where H and W are the spatial
dimensions of the image and D is the maximum search range.

ar
X

iv
:2

20
9.

06
52

5v
1 

 [
cs

.C
V

] 
 1

4 
Se

p 
20

22

https://github.com/thedodo/FCDSN-DC


Fig. 1. FCDSN-DC network structure. The Feature Extraction part learns expressive, deep features for the left and right image. Afterwards the Similarity
Function part takes the concatenated input of the feature extractor and learns accurate similarity functions. Then the LR check is performed in order to get
rid of inconsistent points. The Depth Completion part then takes the incomplete disparity map together with the corresponding RGB image in order to fill
the missing disparity measurements.

Then a winner-takes-all approach is used by taking the argmax
along the D dimension in order to get the final disparity
estimation. The disparity map for the left and the right image
is created in such a manner and the left-right consistency
check [7] is performed in order to remove inconsistent points.

The last part of the network then fills these previously
removed inconsistent points. For each invalid point a set
of consistent points is gathered along predefined cardinal
directions. This gathered information together with the left
RGB image is parsed into a shallow CNN network structure
in order to train a new disparity label at this location. Instead
of directly training on the integer ground-truth disparity we
re-formulate the problem by choosing the closest disparity in
the gathered information and using its position in the input
vector as the class label.

This leads to a very lightweight network with a total of
0.385 million trainable parameters, which is only 15 thousand
more than the baseline method FC-DCNN [3] and significantly
less parameters than other machine learning stereo methods,
which often need millions of trainable parameters. In sum-
mary, our contributions are as follows:

• We improve upon the baseline method FC-DCNN by
adding two new parts, leading to a more accurate trainable
method with two stages that outperforms the baseline
method in every evaluated dataset.

• We introduce a novel yet simple machine learning method
for depth completion. This method learns new disparities
for previously considered inconsistent points with only
the need of a shallow CNN structure. The output of this
method is a completely dense and more accurate disparity
map.

• We show that this method does not only outperform the
baseline method on the most challenging and well-known
stereo vision benchmarks, namely the Middlebury, Kitti
and ETH3D benchmark, but can also compete with state-
of-the art methods well known in the field.

• We show that our method is not only accurate for the

trained datasets, but also applicable for a wide array of
different domains without the need of retraining.

II. RELATED WORK

Our work is based on previous works on deep learning
based stereo estimation networks, disparity refinement and
depth completion.

Learning based stereo estimation has lead to some major
advances in the field in recent years. J. Zbontar and Y. LeCun
popularized the shared-weigths siamese network structure for
stereo estimation in their work named MC-CNN [6]. In their
work they extract small grayscale image patches from the left
and the corresponding image patches from the right image.
As their learning goal is to increase the distance of similarity
between corresponding and non-corresponding image patches,
they furthermore extract non-corresponding patches from the
right image used for the training loss. J. Zbontar and Y. LeCun
created two different versions of their method called MC-
CNN-fast and MC-CNN-accurate. The first version uses the
dot product as similarity function while the latter trains it using
fully-connected layers. Most state-of the art learning based
stereo methods use variations of the shared-weights siamese
network structure [3][4][5][6][10][11][12][13][14].

In D. Hirner and F. Fraundorfers work called FC-DCNN [3]
the siamese network structure was extended by using densely
connected layers for the feature extractor as well as building
a novel handcrafted post-processing method. In their paper
they have shown that this hybrid method already works better
than traditional methods such as SGM [1] while remaining
lightweight in terms of the total number of trainable parame-
ters.

H. Xu and J. Zhang introduced a network called
AANet [13]. In this work they get completely rid of the 3D
convolutions to achieve faster inference speed while maintain-
ing comparable accuracy to other state-of the art methods.
In their method they first use a feature extractor on multiple
scales to create multiple cost-volumes on different scales.



These cost-volumes are then passed to Intra- and Cross-
Scale Aggregation modules. These modules use deformable
convolutions [15][16] to get rid of edge-flattening issues.
Afterwards the resulting disparity maps at different resolutions
are used for upsampling and refinement.

Disparity refinement is used in order to further improve
the disparity prediction. In this step the often noisy and
outlier-prone initial disparity map is taken and improved via
optimization. One of the most popular traditional disparity
refinement methods is semi-global matching (SGM) by H.
Hirschmueller [1]. In his paper he uses Mutual Informa-
tion [17] as the similarity function in order to get the initial
noisy disparity map. Afterwards the matching costs from all
16 cardinal direction for each pixel is aggregated and used in
order to update the disparity value. This is done by viewing the
aggregation of each direction separately as a 1D optimization
problem which is then combined to get the updated value. G.
Facciolo et al. [2] improved upon this method by using more
evolved structures for the matching cost aggregation. In his
paper he shows that these evolved structures can improve upon
some artefacts of the belief update such as streaking artefacts
that are often present when using the SGM [1] method.

Depth completion is the process of taking a sparse disparity
input and assigning new values to the missing measurements.
F. Aleotti et al. used monocular cues in their work [18]
called Monocular Completion Network (MCN) in order to
fill unreliable points. They argue that since monocular depth
estimation does not rely on matching, it does not suffer from
occlusion artefacts like traditional stereo methods. They lever-
age reliable disparity points gotten from a traditional stereo
method and train a monocular disparity completion network
on this. There exists a number of methods aiming to fill sparse
depth maps based on the output of LIDAR scanners or SLAM
algorithms [19][20][21][42][43]. These methods however are
not directly comparable to our work, as they use depth or
point cloud data directly as their input and therefore compete
in different benchmarks.

III. NETWORK

The network consists of three sequentially dependent parts.
First, rich and deep features are trained, then a similarity
function for these new features is learned. In the last step,
the left-right consistency check [7] is performed in order to
get rid of inconsistent depth predictions and a novel trainable
depth-completion task is performed to fill in this missing
values. In our experiments, the feature extraction and similarity
estimation part is trained jointly, while the depth-completion
task is trained afterwards.

Our method differs from the baseline implementation FC-
DCNN [3] in the following ways:

• The feature extractor remains the same, using densely
connected fully-convolutional layers as proposed by G.
Huang et al. [8]. Our feature extractor consists of four
such densely connected convolutional layers training a
60 dimensional feature vector per image point. This is
a reduction of one layer in comparison to the baseline

method FC-DCNN [3]. We found this network configu-
ration to work best through multiple empirical trial-and-
error evaluations. The same training scheme is used as
described in the baseline method implementation FC-
DCNN [3], where the distance of the similarity score
between matching and close non-matching image patches
of the left and right image are increased by using a hinge-
loss.

• The handcrafted cosine similarity function is replaced by
our similarity function network. By fitting the similarity
function on the data by training, a better accuracy score
can be achieved.

• The handcrafted post-processing step to fill in the incon-
sistent points is replaced by our novel shallow network
for depth-completion.

Our whole method has been implemented using Python3,
pytorch 1.2.0 [22] and Cuda 10.0. Furthermore, we use the
OpenCV 4.2.0 [23] library for image manipulation. The fea-
ture extraction and similarity measurement part are trained
jointly using the Adam optimizer [24] with a learning rate of
6.0 × 10−5, a batch-size of 100 and a patch-size of 21. The
depth completion part is trained separately, with the weights
of the feature extractor and similarity measurement network
being frozen. We use Adam optimizer [24] with a learning rate
of 6.0× 10−6 and the Cross-entropy loss CE for the training
of the depth completion network as seen in Eq. 1. For the
depth-completion part a batch-size of 1000 and a patch-size
of 7 is used for training.

CE = −
∑

P (X)log(P (X)) (1)

A. Similarity Measurement

The goal of the similarity measurement network is to
learn better matching costs for the dataset than for example
the cosine similarity or sum of absolute difference/sum of
squared difference (SAD/SSD) [9]. It consists of five densely
connected fully convolutional layers and one deformable con-
volution layer at the end of the network.

In contrast to other popular methods we do not use fully
connected layers or 3D-convolutions. Instead it uses a fully
convolutional, densely connected network structure which
leads to a less complex yet accurate network structure. Fur-
thermore, this network structure allows for varying input image
size.

The network is trained jointly with the feature extraction
network, getting as input the concatenated trained features for
s+ = {p, qpos} and s− = {p, qneg}, where p denotes the
image point of the left image and qpos and qneg denotes the
correct and and incorrect match of the right image respectively.
Therefore the same hyperparameters, such as patch size, batch
size or optimizer are used in order to train both the feature
extraction as well as the similarity measurement part of the
method. Both similarities s+ and s− are then used in each
training step, using Eq. 2 as loss.

loss = max(0, 0.2 + s− − s+). (2)



B. Depth Completion
In order to find new labels for the missing points we train

a shallow CNN network. To this end, finding new labels
is defined as a classification problem. However, instead of
defining the integer disparities of the ground-truth as the class
labels and training on that directly, we instead re-formulate
the problem. In our method, this consistent disparity map with
often large holes of missing data is taken and for every point
marked invalid, a set number of valid points from the neigh-
bourhood is gathered. The amount of valid points gathered is
a hyperparameter. We empirically found that 10 valid points
per invalid pixel lead to good results. The valid points are
always gathered along the same directions, the left and the
right side of the inconsistent point consecutively, however the
first valid point along any given direction could be further or
closer depending on how many invalid points are next in that
direction. Afterwards the ground truth disparity value at that
position is taken and compared with the gathered information.
The position of the closest disparity within the range of [−2, 2]
in the so created vector is then taken and recorded as the
class-label for the training task. This is illustrated in the first
example of Fig. 2. The first line, class, shows the position
of the input vector as the class label which will be used for
training. The second line, input, shows a dummy example of
gathered valid disparities for a given invalid point. The third
line shows the true disparity of this invalid point and the last
line shows the found class label used for training. The input
vector is then searched for the occurrence of this true disparity.
If no value is found within this range of the ground-truth, the
point is discarded for the training process.

If the found class-label has multiple entries in the vector,
the first occurrence is taken as the label. This is shown in the
second example of Fig. 2. This however has the drawback,
that lower classes are favoured and therefore are more likely
to appear. To counter this class imbalance that can occur, the
class weights are normalized previous to training.

Fig. 2. First: Example on how the ground-truth label for the depth-completion
network is created given the collected valid disparities and the corresponding
known disparity of the training dataset.
Second: Example on how the ground-truth label for the depth-completion
network is created if the input vector has multiple valid entries.

A patch of the so created vectors together with the patch
of RGB values of the left image at the same position is then

TABLE I
ACCURACY COMPARISON ON THE MIDDLEBURY TRAINING DATASET

Method 4-PE 2-PE 1-PE 0.5 PE

Train
FCDSN-DC (ours) 5.08 9.47 26.6 60.6

LBPS [28] 4.97 9.63 21.2 51.5

MC-CNN-acrt [6] 6.34 10.1 18.4 39.8

HSM-Net RVC [29] 4.52 10.2 22.8 49.2
FC-DCNN (baseline) [3] 12.3 17.9 34.7 65.1

Test
FCDSN-DC (ours) 10.2 13.0 19.7 39.9

taken as input for a shallow CNN. The network consists of
three convolution layers and a softmax output layer.

This method has two main advantages over training the
integer disparity labels directly: One, it strongly limits the
number of classes needed for the classification task therefore
also strongly limiting the needed resources and complexity of
the network. Two, it helps with generalization as the disparity
range of the data does not effect the input data, as only the
position of the closest point in the neighbourhood is learned.
One drawback of this method is that the data preparation
for training and inference is more time-consuming as training
directly on integer labels.

IV. EXPERIMENTS

We test our whole framework on a number of challenging
real life indoor and outdoor scenes and compare our methods
to the results of other state-of-the art methods from the official
benchmarks with similar scores. For our overall ranking and
further comparisons with more state-of-the art methods the
online benchmarks can be visited.

A. Middlebury

The Middlebury stereo dataset [26] is a challenging indoor
dataset with dense and highly accurate subpixel ground-truth
data and an online leaderboard. All our experiments were done
using the half (H) resolution.

Table I shows that we more than doubled the accuracy of the
baseline method FC-DCNN on the training dataset in regards
to the 4 − PE and the 2 − PE and strongly improved the
1−PE. Furthermore we compare our results to other popular
methods such as MC-CNN-acrt [6] or HSM-Net [29] and show
that our method performs either better or is on-par with their
results. The last row of Tab. I shows our results on the 13
additional samples of the 2014 Middlebury dataset that were
not used in the training process.

B. KITTI

KITTI stereo [32] is an outdoor street image dataset
created for autonomous driving. There are two different KITTI
datasets, namely KITTI2012 and KITTI2015 captured in dif-
ferent years which can be viewed identical for the stereo
estimation task.



Table II shows that we improved the accuracy of the baseline
method with exception of the 2 − PE for the KITTI2012
dataset. Although the method was optimized with the Middle-
bury dataset in mind, the method produces reasonable results
that are on-par with, or better than other recently released
learning based stereo methods and widely used non-learning
methods such as the SGM implementation of OpenCV [23].

TABLE II
ACCURACY COMPARISON ON THE KITTI TESTING DATASET

Method 5-PE 4-PE 3-PE 2-PE

KITTI2012

FCDSN-DC (ours) 3.16 3.80 5.11 9.11

FC-DCNN (baseline) [3] 3.71 4.40 5.61 8.81
OASM-Net [39] 4.32 5.11 6.39 9.01

AAFS [34] 3.28 4.28 6.10 10.64

HSMA [35] 5.13 6.20 8.15 13.44

KITTI2015

FCDSN-DC (ours) - - 7.09 -

PASMnet [40] - - 7.23 -

AAFS [34] - - 7.54 -

FC-DCNN (baseline) [3] - - 7.71 -

OASM-Net [39] - - 8.98 -

C. ETH3D

The ETH3D stereo dataset [33] consists of a wide range of
different indoor as well as outdoor scenes. Despite the fact,
that this dataset is not the best fit for our method, as it has a
small baseline and therefore less integer-valued disparities for
training, Tab. III shows that we produce competitive results,
often outperforming or being on-par with well-known machine
learning based networks on the training dataset. The difference
between the accuracy of the train and test dataset can be
explained by looking closer at the individual samples. While
the method works well for most test samples, a few samples
produce high errors. This, in fact, is not due to overfitting
of the method but rather these samples should be seen as
failure cases for our method. The failure and success cases can
be viewed at the official benchmark site of ETH3D. Despite
that, Tab. III shows that our method outperforms the baseline
method in all categories except the 0.5− PE.

D. Ablation Study

In this section we show the validity and impact of our
method by performing a number of ablation experiments. For
the sake of consistency, all the following experiments are done
using the same data, namely the Middlebury stereo dataset.
To show the generality of the method, 13 image pairs from
the 2014 Middlebury dataset were omitted from the training
process and are used as the test split for all evaluations. The
structure is as follows: First, we compare the accuracy of our
trained similarity with the accuracy of the handcrafted cosine
similarity cost. Next, we compare the accuracy of our trained
similarity function with or without the deformable convolution

TABLE III
ACCURACY COMPARISON ON THE ETH DATASET

Method 4-PE 2-PE 1-PE 0.5 PE

Train
FCDSN-DC (ours) 0.45 0.70 1.58 11.37

HSM-Net RVC [29] 0.37 0.88 2.86 10.31

RAFT-Stereo [30] 0.50 0.88 2.86 7.06
iResNet [31] 0.09 1.17 4.14 12.61

FC-DCNN (baseline) [3] 0.75 1.41 3.82 16.94

Test
FCDSN-DC (ours) 2.66 5.04 10.24 25.59

HSM-Net RVC [29] 0.52 1.40 4.20 10.88

RAFT-Stereo [30] 0.15 0.44 2.44 7.04
iResNet [31] 0.25 1.00 3.68 10.26

FC-DCNN (baseline) [3] 3.42 6.09 10.72 24.37

layer. Last, we compare the accuracy of our method with and
without the depth completion part.

E. Trained Similarity Function vs. Cosine

We show correctness and improvement of our trained
similarity estimation function by conducting the following
experiment. As the feature extraction and similarity estimation
part are trained jointly, we train our feature extractor from
scratch for one day using the cosine similarity. Afterwards the
feature extraction and similarity estimation is trained jointly
for the same amount of time in order to ensure fairness and
correctness of the comparison.

TABLE IV
ABLATION STUDY TRAINED SIMILARITY FUNCTION ON THE TEST DATA

4-PE 2-PE 1-PE 0.5-PE
Train

Cosine 29.1795 32.946 39.251 57.328
Trained Similarity 15.793 19.350 30.234 55.584

Test
Cosine 28.984 31.499 36.885 53.005

Trained Similarity 20.399 23.157 32.274 53.611

As Tab. IV shows, the accuracy of the method increases
considerably when the similarity function is trained as opposed
to using a handcrafted function such as cosine, except for the
subpixel error on the test set.

F. Deformable Convolution Layer Ablation Study

We conduct an ablation study for the deformable convo-
lution layer by running two experiments. First, we omit the
last deformable convolution layer in the similarity estimation
part of the network. For a more correct comparison we put a
convolution-layer at the end with the same amount of trainable
parameters as the deformable convolution layer has and train
it for the same amount of training steps. Then, we repeat the
experiment, only now with the deformable convolution layer
in place. As seen in Tab. V, the deformable convolution layer
improves the accuracy of the 4−PE and 2−PE but lowers
the accuracy of the 1−PE and 0.5−PE. This means that in



our experiments, using a deformable convolutions decreases
the lower end-point accuracy. However, our method is not
build with subpixel accuracy in mind, instead focusing on
optimizing the higher end-point errors. As the experiment
shows an improvement in the higher end-point errors this does
not speak against the use of deformable convolution layers.

TABLE V
ABLATION STUDY DEFORMABLE CONVOLUTION LAYER

4-PE 2-PE 1-PE 0.5-PE
Train

Without DConv 17.427 20.277 26.248 46.387
With DConv 15.793 19.350 30.234 55.584

Test
Without DConv 21.717 23.991 29.161 46.258

With DConv 20.399 23.157 32.274 53.611

G. Depth Completion Ablation Study

In this section the validity and correctness of our depth
completion part is shown. To this end we report on the
disparity map result of the left frame with the depth completion
part omitted and compare it with the depth completion in
place.

TABLE VI
ABLATION STUDY DEPTH COMPLETION (DC)

4-PE 2-PE 1-PE 0.5-PE
Train

Without DC 8.867 10.743 16.041 38.208
With DC 6.971 9.793 16.192 38.858

Test
Without DC 16.272 18.288 23.858 42.533

With DC 10.240 13.025 19.681 39.860

Tab. VI shows that using our depth completion method
improves upon the overall accuracy, especially for non-trained
data.

H. Generalization Test

We show that our method generalizes well and is well suited
for many different scenarios. We demonstrate this by using
the hyperparameter and trained weights from the Middlebury
dataset and do inference on true in-the-wild datasets that lack
ground-truth or knowledge about the camera intrinsics. To
this end we test our framework on two different publicly
available datasets, namely the Holopix50k dataset [36] and
the Flickr1024 dataset [37]. As Fig. 3 shows, our method
produces useful results without the need of retraining for
many different domains, such as indoor scenes with clutter,
outdoor scenes and architecture. Furthermore, a quantitative
study was performed to show the generality of the trained
depth completion. To this end, we use the weights trained on
one dataset, to do inference on the other datasets and report
on the 2-point error. As input the disparity maps with removed
inconsistencies produced by the previous parts of our method
were taken.

Tab. VII shows the 2-PE of the quantitative generalization
test of the depth completion part of our method. It shows that

TABLE VII
GENERALIZATION TEST DEPTH COMPLETION

Middlebury Kitti2012 Kitti2015 ETH3D
(trained) (trained) (trained) (trained)

Middlebury 9.47 10.254 11.02 10.256
Kitti2012 13.56 13.16 13.24 13.16
Kitti2015 15.58 15.21 15.21 15.21
ETH3D 0.93 0.87 0.98 0.87

our method generalizes well and that the end-point error stays
stable, even if the network is trained with different data.

Fig. 3. Qualitative results of selected stereo pair of our framework from
different domains. From top to bottom: 2 samples of Holopix and 2 samples
of Flickr.

V. CONCLUSION

In this work we have presented a fully trainable stereo
estimation method that produces completely dense disparity
maps. We have shown that our method improved upon the
baseline method of FC-DCNN in all evaluated challenging
datasets. We have introduced a novel learning based depth-
completion method. By reformulating the classification task
for the missing disparity labels we were able to limit the
amount of classes needed for inference and training for this
task. We have argued that this leads to a shallow and effective
network that improved the overall accuracy of the method.
Furthermore, we have shown that our method is able to gen-
eralize well to previously unseen data from different domains,
producing reasonable qualitative results.
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