Kuzu, Ridvan Salih und Mühlmann, Philipp und Zhu, Xiao Xiang (2022) Automatic separation of laminar-turbulent flows on aircraft wings and stabilisers via adaptive attention butterfly network. Experiments in Fluids, 63 (10), Seiten 1-26. Springer Nature. doi: 10.1007/s00348-022-03516-4. ISSN 0723-4864.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://dx.doi.org/10.1007/s00348-022-03516-4
Kurzfassung
Many of the laminar-turbulent flow localisation techniques are strongly dependent upon expert control even-though determining the flow distribution is the prerequisite for analysing the efficiency of wing & stabiliser design in aeronautics. Some recent efforts have dealt with the automatic localisation of laminar-turbulent flow but they are still in infancy and not robust enough in noisy environments. This study investigates whether it is possible to separate flow regions with current deep learning techniques. For this aim, a flow segmentation architecture composed of two consecutive encoder-decoder is proposed, which is called Adaptive Attention Butterfly Network. Contrary to the existing automatic flow localisation techniques in the literature which mostly rely on homogeneous and clean data, the competency of our proposed approach in automatic flow segmentation is examined on the mixture of diverse thermographic observation sets exposed to different levels of noise. Finally, in order to improve the robustness of the proposed architecture, a self-supervised learning strategy is adopted by exploiting 23.468 non-labelled laminar-turbulent flow observations.
elib-URL des Eintrags: | https://elib.dlr.de/190647/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | his work has been supported by the Helmholtz Artificial Intelligence Cooperation Unit under Project ID HAICU- HLST 3023535. The aircraft test activities received funding from the European Community’s Seventh Framework Programme FP7/2007- 2013, under grant agreement no. 604013, AFLoNext project. | ||||||||||||||||
Titel: | Automatic separation of laminar-turbulent flows on aircraft wings and stabilisers via adaptive attention butterfly network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 18 Oktober 2022 | ||||||||||||||||
Erschienen in: | Experiments in Fluids | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 63 | ||||||||||||||||
DOI: | 10.1007/s00348-022-03516-4 | ||||||||||||||||
Seitenbereich: | Seiten 1-26 | ||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||
Name der Reihe: | Springer Nature | ||||||||||||||||
ISSN: | 0723-4864 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Infrared Thermography, Laminar-Turbulent Flow, Flow Separation, Thermographic Flow Visualisation, Flow Transition Localisation, Self-supervised Learning, Image Segmentation, UNet, CNN, Attention Mechanism. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, E - Thermochemische Prozesse | ||||||||||||||||
Standort: | Braunschweig , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Aerodynamik und Strömungstechnik | ||||||||||||||||
Hinterlegt von: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||
Hinterlegt am: | 23 Nov 2022 12:49 | ||||||||||||||||
Letzte Änderung: | 02 Nov 2023 18:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags