García-Gonzalez, Jorge und García-Aguilar, Iván und Medina, Daniel und Luque-Baena, Rafael Marcos und López-Rubio, Ezequiel und Domínguez-Merino, Enrique (2022) Vehicle overtaking hazard detection over onboard cameras using deep convolutional networks. In: 17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022, 531, Seiten 330-339. Springer. SOCO 2022 17th International Conference on Soft Computing Models in Industrial and Environmental Applications, 2022-09-05 - 2022-09-07, Salamanca, Spain. doi: 10.1007/978-3-031-18050-7_32. ISBN 978-303118049-1. ISSN 2367-3370.
PDF
- Nur DLR-intern zugänglich
933kB |
Kurzfassung
The development of artificial vision systems to support driving has been of great interest in recent years, especially after new learning models based on deep learning. In this work, a framework is proposed for detecting road speed anomalies, taking as reference the driving vehicle. The objective is to warn the driver in real-time that a vehicle is overtaking dangerously to prevent a possible accident. Thus, taking the information captured by the rear camera integrated into the vehicle, the system will automatically determine if the overtaking that other vehicles make is considered abnormal or dangerous or is considered normal. Deep learning-based object detection techniques will be used to detect the vehicles in the road image. Each detected vehicle will be tracked over time, and its trajectory will be analyzed to determine the approach speed. Finally, statistical regression techniques will estimate the degree of anomaly or hazard of said overtaking as a preventive measure. This proposal has been tested with a significant set of actual road sequences in different lighting conditions with very satisfactory results.
elib-URL des Eintrags: | https://elib.dlr.de/190193/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||
Titel: | Vehicle overtaking hazard detection over onboard cameras using deep convolutional networks | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||
Erschienen in: | 17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Band: | 531 | ||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-031-18050-7_32 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 330-339 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
Name der Reihe: | Lecture Notes in Networks and Systems | ||||||||||||||||||||||||||||
ISSN: | 2367-3370 | ||||||||||||||||||||||||||||
ISBN: | 978-303118049-1 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Convolutional Neural Networks; Computer Vision; Automobile; Overtaking | ||||||||||||||||||||||||||||
Veranstaltungstitel: | SOCO 2022 17th International Conference on Soft Computing Models in Industrial and Environmental Applications | ||||||||||||||||||||||||||||
Veranstaltungsort: | Salamanca, Spain | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 5 September 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 7 September 2022 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - I4Port (alt) | ||||||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||||||||||
Hinterlegt von: | Medina, Daniel | ||||||||||||||||||||||||||||
Hinterlegt am: | 08 Dez 2022 18:52 | ||||||||||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 11:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags