Karges, Nils and Staab, Jeroen and Rauh, Jürgen and Wegmann, Martin and Taubenböck, Hannes (2022) Soundscapes on edge - The real-time machine learning approach for measuring Soundscapes on resource-constrained devices. In: Proceedings of the 24th International Congress on Acoustics, pp. 128-139. Proceedings of the 24th International Congress on Acoustics, 2022-10-24 - 2022-10-28, Gyeongju, Korea.
PDF
1MB |
Official URL: https://ica2022korea.org/data/Proceedings_A14.pdf
Abstract
According to the WHO, noise is a growing problem in urban areas and the second most common environmental cause of health issues in Europe. As a complementary approach to noise maps based on sound pressure levels, soundscape maps can be a useful tool for urban planning, providing more information about how people perceive acoustic environments. This study describes an in-situ soundscape monitoring system based on WASN (Wireless Acoustic Sensor Network) for statistical spatial-temporal prediction of soundscapes in urban areas. Soundscape data on specifically defined spatial scales were observed and evaluated using a microcontroller with a 32-bit nRF52840 Nordic Semiconductors CPU and 1MB of memory in a multifunctional urban area. The use of TinyML enabled machine learning algorithms provided state-of-the-art soundscape classification to a low-cost edge device with extreme resource constraints regarding memory, speed, and lack of GPU support. Sound source types are classified into anthrophony, traffic, biophony, and geophony sounds using ESC-50 for evaluation. Our final MFCC-based CNN achieved an accuracy of 81.6% and even reached higher accuracy in the enclosed studio test. The results show that it is computationally feasible to classify soundscapes on low-power microcontrollers and potentially inform decision-makers based on extended sound analysis
Item URL in elib: | https://elib.dlr.de/190129/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Soundscapes on edge - The real-time machine learning approach for measuring Soundscapes on resource-constrained devices | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Proceedings of the 24th International Congress on Acoustics | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Page Range: | pp. 128-139 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Soundscape, TinyML, WASN | ||||||||||||||||||||||||
Event Title: | Proceedings of the 24th International Congress on Acoustics | ||||||||||||||||||||||||
Event Location: | Gyeongju, Korea | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 24 October 2022 | ||||||||||||||||||||||||
Event End Date: | 28 October 2022 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Staab, Jeroen | ||||||||||||||||||||||||
Deposited On: | 22 Nov 2022 20:31 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page