elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-fidelity machine learning modeling for wheel locomotion

Fediukov, Vladyslav und Dietrich, Felix und Buse, Fabian (2022) Multi-fidelity machine learning modeling for wheel locomotion. In: 11th Asia-Pacific Regional Conference of the International society for terrain-vehicle systems, ISTVS 2022. ISTVS. 11th Asia-Pacific Regional Conference of the ISTVS, 2022-09-26 - 2022-09-28, Harbin, China. doi: 10.56884/WGPV6693.

[img] PDF - Nur DLR-intern zugänglich
17MB

Kurzfassung

Wheeled vehicles are the most convenient and widespread locomotion machines for the majority of research, industrial or private tasks. A perceptible share of wheeled vehicles is used on soft soil. Modelling wheel locomotion in these situations is challenging, because of the non-proportional relation between applied shear stress and the soil’s deformation. Currently, various conventional simulation approaches are used to describe wheel–soil interaction, ranging from detailed numerical methods with particle-level simulations to simpler empirical models, where a big part of physical formulas are set up a priori, empirically. The ultimate wheel locomotion modelling tool should have high-quality onboard predictions but within a reasonable time. The trade-off is unachievable with the current simulation tools. In this project, we argue that using Machine Learning (ML) we can build a tool with the quality of high-fidelity and speed of lower-fidelity simulations. To fit this requirement, we are combining data from several models with different fidelities, in order to build a multi-fidelity ML model. In the model, forces and torques acting on the wheel are predicted using input data like the wheel’s trajectory, surface and soil characteristics. The quality of this model will be validated by Terramechanics Robotics Locomotion Laboratory (TROLL) at Deutsche Zentrum für Luft- und Raumfahrt (DLR), a robotic single-wheel test bed designed to perform wheel–soil interaction experiments automatically. Early results show that, in simplified scenarios, our proposed method can be used to create efficient, multi-fidelity numerical models for locomotion prediction, including uncertainty estimation for the predictions.

elib-URL des Eintrags:https://elib.dlr.de/190039/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Multi-fidelity machine learning modeling for wheel locomotion
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fediukov, Vladyslavvladyslav.fediukov (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dietrich, Felixfelix.dietrich (at) tum.dehttps://orcid.org/0000-0002-2906-1769NICHT SPEZIFIZIERT
Buse, FabianFabian.Buse (at) dlr.dehttps://orcid.org/0000-0002-2279-5735NICHT SPEZIFIZIERT
Datum:29 September 2022
Erschienen in:11th Asia-Pacific Regional Conference of the International society for terrain-vehicle systems, ISTVS 2022
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.56884/WGPV6693
Verlag:ISTVS
Status:veröffentlicht
Stichwörter:Terramechanics, Rover Locomotion, Machine Learning, Multi-Fidelity
Veranstaltungstitel:11th Asia-Pacific Regional Conference of the ISTVS
Veranstaltungsort:Harbin, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 September 2022
Veranstaltungsende:28 September 2022
Veranstalter :International society for terrain-vehicle systems
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetare Exploration
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Systemdynamik und Regelungstechnik > Raumfahrt-Systemdynamik
Hinterlegt von: Fediukov, Vladyslav
Hinterlegt am:30 Nov 2022 10:19
Letzte Änderung:24 Apr 2024 20:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.