Mühlbauer, Maximilian Sebastian und Stulp, Freek und Albu-Schäffer, Alin Olimpiu und Silvério, João (2022) Mixture of experts on Riemannian manifolds for visual-servoing fixtures. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning. IROS 2022 Workshop Probabilistic Robotics in the Age of Deep Learning, 2022-10-27, Kyoto, Japan.
PDF
3MB |
Offizielle URL: https://probabilisticrobotics.github.io/#04
Kurzfassung
Adaptive Virtual Fixtures (VFs) for teleoperation often rely on visual inputs for online adaptation. State estimation from visual detections is never perfect, and thus affects the quality and robustness of adaptation. It is therefore important to be able to quantify how uncertain an estimation from vision is. This can, for example, inform on how to modulate a fixture's stiffness to decrease the physical force a human operator has to apply. Furthermore, the target of a manipulation operation might not be known from the beginning of the task, which creates the need for a principled way to add and remove fixtures when possible targets appear in the robot workspace. In this paper we propose an on-manifold Mixture of Experts (MoE) model that synthesizes visual-servoing fixtures while elegantly handling full pose detection uncertainties and 6D teleoperation goals in a unified framework. An arbitration function allocating the authority between multiple vision-based fixtures arises naturally from the MoE formulation. We show that this approach allows a teleoperator to insert multiple printed circuit boards (PCBs) with high precision without requiring the manual design of VFs to guide the robot motion. An exemplary video visualizing the probability distribution resulting from our model is available at: https://youtu.be/GKMQvbJ5OzA
elib-URL des Eintrags: | https://elib.dlr.de/189970/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Mixture of experts on Riemannian manifolds for visual-servoing fixtures | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 27 Oktober 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Mixture of experts, Riemannian manifolds, shared control, virtual fixtures | ||||||||||||||||||||
Veranstaltungstitel: | IROS 2022 Workshop Probabilistic Robotics in the Age of Deep Learning | ||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsdatum: | 27 Oktober 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Telerobotik, R - Erklärbare Robotische KI | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||
Hinterlegt von: | Mühlbauer, Maximilian Sebastian | ||||||||||||||||||||
Hinterlegt am: | 05 Dez 2022 14:36 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags