Field, Michael and Snow, Tasha and Abrahams, E. and Lee, E. and Baumhoer, Celia and Siegfried, M. (2022) Mapping Ice Shelf Calving Fronts at Thwaites Glacier using Deep Learning and Satellite Imagery in a Cloud-Based Workflow. AGU 2022, 2022-12-12 - 2022-12-16, Chicago, USA.
Full text not available from this repository.
Abstract
Thwaites Glacier (TG) is one of the primary sources of ice mass loss from the West Antarctic Ice Sheet, making it a critical site for monitoring changes in the calving front location. The long duration of the Landsat mission provides a valuable opportunity to analyze over 50 years of historical imagery and produce near-real-time calving front monitoring solutions for the future. Here, we have developed a tool that allows users to produce calving front maps from cloud-hosted Landsat imagery using a U-Net, a deep learning architecture commonly used for semantic segmentation. The tool utilizes open-source Python packages for rapid querying of the Landsat catalog stored in a the Spatio-Temporal Asset Catalog (STAC) standardized metadata format, and for scalable and distributed cloud processing. This cloud-based workflow will provide researchers with access to pre-trained calving front segmentation models and decades of Landsat imagery from Thwaites Glacier. This workflow may be expanded in the future to provide historical analysis and near-real-time monitoring of other important ice shelves and glaciers in Antarctica.
Item URL in elib: | https://elib.dlr.de/189901/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Mapping Ice Shelf Calving Fronts at Thwaites Glacier using Deep Learning and Satellite Imagery in a Cloud-Based Workflow | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | December 2022 | ||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Thwaites glacier, Antarctica, deep learning, calving | ||||||||||||||||||||||||||||
Event Title: | AGU 2022 | ||||||||||||||||||||||||||||
Event Location: | Chicago, USA | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 12 December 2022 | ||||||||||||||||||||||||||||
Event End Date: | 16 December 2022 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center | ||||||||||||||||||||||||||||
Deposited By: | Baumhoer, Dr. Celia | ||||||||||||||||||||||||||||
Deposited On: | 22 Nov 2022 20:27 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page