Field, Michael und Snow, Tasha und Abrahams, E. und Lee, E. und Baumhoer, Celia und Siegfried, M. (2022) Mapping Ice Shelf Calving Fronts at Thwaites Glacier using Deep Learning and Satellite Imagery in a Cloud-Based Workflow. AGU 2022, 2022-12-12 - 2022-12-16, Chicago, USA.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Thwaites Glacier (TG) is one of the primary sources of ice mass loss from the West Antarctic Ice Sheet, making it a critical site for monitoring changes in the calving front location. The long duration of the Landsat mission provides a valuable opportunity to analyze over 50 years of historical imagery and produce near-real-time calving front monitoring solutions for the future. Here, we have developed a tool that allows users to produce calving front maps from cloud-hosted Landsat imagery using a U-Net, a deep learning architecture commonly used for semantic segmentation. The tool utilizes open-source Python packages for rapid querying of the Landsat catalog stored in a the Spatio-Temporal Asset Catalog (STAC) standardized metadata format, and for scalable and distributed cloud processing. This cloud-based workflow will provide researchers with access to pre-trained calving front segmentation models and decades of Landsat imagery from Thwaites Glacier. This workflow may be expanded in the future to provide historical analysis and near-real-time monitoring of other important ice shelves and glaciers in Antarctica.
elib-URL des Eintrags: | https://elib.dlr.de/189901/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Mapping Ice Shelf Calving Fronts at Thwaites Glacier using Deep Learning and Satellite Imagery in a Cloud-Based Workflow | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Dezember 2022 | ||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Thwaites glacier, Antarctica, deep learning, calving | ||||||||||||||||||||||||||||
Veranstaltungstitel: | AGU 2022 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Chicago, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Dezember 2022 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 16 Dezember 2022 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum | ||||||||||||||||||||||||||||
Hinterlegt von: | Baumhoer, Dr. Celia | ||||||||||||||||||||||||||||
Hinterlegt am: | 22 Nov 2022 20:27 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags