Al-Sayeh, Hani und Memishi, Bunjamin und Jibril, Muhammad Attahir und Paradies, Marcus und Sattler, Kai-Uwe (2022) Juggler: Autonomous Cost Optimization and Performance Prediction of Big Data Applications. In: 2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022. SIGMOD 2022, 2022-06-12 - 2022-06-17, Philadelphia, US. doi: 10.1145/3514221.3517892. ISBN 978-145039249-5. ISSN 0730-8078.
PDF
2MB |
Kurzfassung
Distributed in-memory processing frameworks accelerate iterative workloads by caching suitable datasets in memory rather than recomputing them in each iteration. Selecting appropriate datasets to cache as well as allocating a suitable cluster configuration for caching these datasets play a crucial role in achieving optimal performance. In practice, both are tedious, time-consuming tasks and are often neglected by end users, who are typically not aware of workload semantics, sizes of intermediate data, and cluster specification. To address these problems, we present Juggler, an end-to-end framework, which autonomously selects appropriate datasets for caching and recommends a correspondingly suitable cluster configuration to end users, with the aim of achieving optimal execution time and cost. We evaluate Juggler on various iterative, real-world, machine learning applications. Compared with our baseline, Juggler reduces execution time to 25.1% and cost to 58.1%, on average, as a result of selecting suitable datasets for caching. It recommends optimal cluster configuration in 50% of cases and near-to-optimal configuration in the remaining cases. Moreover, Juggler achieves an average performance prediction accuracy of 90%.
elib-URL des Eintrags: | https://elib.dlr.de/189731/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Juggler: Autonomous Cost Optimization and Performance Prediction of Big Data Applications | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | 2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1145/3514221.3517892 | ||||||||||||||||||||||||
ISSN: | 0730-8078 | ||||||||||||||||||||||||
ISBN: | 978-145039249-5 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | performance prediction, cost optimization, apache spark, big data | ||||||||||||||||||||||||
Veranstaltungstitel: | SIGMOD 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | Philadelphia, US | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juni 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 17 Juni 2022 | ||||||||||||||||||||||||
Veranstalter : | ACM | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Big Data | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und -aufbereitung | ||||||||||||||||||||||||
Hinterlegt von: | Paradies, Dr.-Ing. Marcus | ||||||||||||||||||||||||
Hinterlegt am: | 17 Nov 2022 15:35 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags