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ABSTRACT

Distributed in-memory processing frameworks accelerate iterative
workloads by caching suitable datasets in memory rather than re-
computing them in each iteration. Selecting appropriate datasets to
cache as well as allocating a suitable cluster configuration for caching
these datasets play a crucial role in achieving optimal performance.
In practice, both are tedious, time-consuming tasks and are often
neglected by end users, who are typically not aware of workload
semantics, sizes of intermediate data, and cluster specification.

To address these problems, we present Juggler, an end-to-end
framework, which autonomously selects appropriate datasets for
caching and recommends a correspondingly suitable cluster config-
uration to end users, with the aim of achieving optimal execution
time and cost. We evaluate Juggler on various iterative, real-world,
machine learning applications. Compared with our baseline, Jug-
gler reduces execution time to 25.1 % and cost to 58.1 %, on average,
as a result of selecting suitable datasets for caching. It recommends
optimal cluster configuration in 50 % of cases and near-to-optimal
configuration in the remaining cases. Moreover, Juggler achieves
an average performance prediction accuracy of 90 %.
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Figure 1: Selection of appropriate datasets for caching (lir).

1 INTRODUCTION

With the recent advent of iterative machine learning applications,
modern data-intensive systems such as Spark [68] maximize the
performance efficiency of iterative workloads by caching crucial
datasets in memory, to avoid recomputing or fetching them in each
iteration from slower storage (e.g., disk or HDFS) [65].
Optimal selection of datasets to cache. Typically, application
developers decide which datasets to cache based on their knowl-
edge of the application’s data flow dependencies [37, 55, 67]. But
beforehand, they do not know the cluster environment (number of
machines, total memory capacity), data size, application parameters,
etc. It is the end users who configure the cluster environment and
finally run the application. And usually, they handle the application
binaries without the possibility to inspect the application logic and
deduce an optimal selection of datasets to cache [32]. For specialized
libraries, such as Spark MLlib [42], the decision of which datasets
to cache is not even up to the application developers but instead
chosen by the library developers. All these aspects lead to poor
caching decisions, which ultimately result in low performance.

For example, the developers of Linear Regression (lir) application
in the HiBench benchmark [8, 26] do not cache any datasets. The
dataset that is read in each iteration and thus should be cached
is the potentially large original input dataset. To demonstrate the
impact of caching on the overall performance, we modify the lir
application by caching the input dataset (35.9GB) in memory and
run the application on our private cluster (cf. § 7 for details) with
different cluster configurations (1–12 machines). With this modifi-
cation, the execution time and cost (#machines × time) decrease,
on average, to 54.8 % and 34.3 % respectively, as shown in Figure 1.
Optimal selection of cluster configuration. To illustrate the
impact of the cluster configuration (#machines), we select Support
Vector Machine (svm) application that contains a single developer-
cached dataset (a dataset cached by HiBench developers). We run
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Figure 2: Selection of a suitable cluster configuration (svm).

it on an input dataset of 59.5GB on our private cluster with differ-
ent cluster configurations (1–12 machines). For each cluster con-
figuration, we measure the actual execution time and cost of the
application runs. As depicted in Figure 2, we distinguish three areas:

• Area A (1–7 machines): Allocating more machines decreases
both time and cost.
• Area B (7–12machines): Allocatingmoremachines decreases
time but increases cost (time vs cost trade-off).
• Area C (7 machines): The junction of area A & B, where exe-
cution cost is at a minimum (optimal cluster configuration).

In area A, fewer machines mean less cluster memory (#Machines ×
memory permachine) for caching partitions of the crucial developer-
cached dataset (35.7GB) in svm, considering each machine with
processing power and 5.6GB of memory for caching (cf. § 2.2). As a
result, many partitions are evicted from memory and re-computed
in every iteration, which is too costly. An in-depth look into a single
iteration reveals that: (1) The percentage of data partitions evicted
from cache in area A for 1 to 7 machines are 83 %, 65 %, 48 %, 30 %,
13 %, 8 % and 0%, respectively. (2) On average, a task that recom-
putes an evicted partition takes 97× longer than a task that reads
an already cached partition of equal size. In area C, cluster memory
(39.2GB) fits the whole 35.7GB developer-cached dataset. In area B,
adding more machines reduces the time of the parallel part of the
processing pipeline but increases data transfer overhead. Moreover,
the number of machines does not influence the time of the serial
part [14]. All these result in increased cost.

Amdahl [14], Ousterhout et al. [47], Venkataraman et al. [59],
and Alipourfard et al. [13], among others, study the overhead in-
troduced by an increasing number of machines (area B). However,
they do not consider the impact of memory limitation with regards
to caching crucial datasets (area A). We make predictions for the
same experiments using Ernest [59] and realize that its prediction
is accurate only in area B. But since it does not factor in memory
limitation, its prediction is inaccurate in area A. Even worse, Ernest
predicts the cluster configuration with minimum cost to be a single
machine. In reality, the actual cost on a single machine is higher
than Ernest’s prediction by 16× and higher than the optimal cost
(on 7 machines) by 12×, as seen in Figure 2. In contrast to data-
intensive applications (e.g., lir and svm), data processing is the
dominant delaying factor in CPU-intensive applications that run
for many hours or even days [59]. This explains why the benefit of

caching some datasets becomes relatively low in such applications,
and why Ernest predicts their performance accurately.

Cache eviction policies like LRU, LRC [65, 66], and MRD [49]
tackle the cache limitation problem by prioritizing datasets to cache
over those to evict. We apply them on the svm experiments and do
not realize any performance improvement because svm contains
a single developer-cached dataset. We further study all workloads
in HiBench and realize that most of them contain at most one
developer-cached dataset. For those that contain several developer-
cached datasets, all these policies mostly make the same decision.

Optimizing execution cost is important for recurring applications
that are executed repeatedly on various datasets with different
user-selected parameters. In operational clusters, up to 60% of
analytical applications are recurring [29]. Some of them are highly
repetitive [10, 19, 20]. In addition, some studies report that the
majority of executed applications are short-running [52] (80 % of
applications running on Yahoo, Facebook and Microsoft production
clusters take less than 10 minutes [18]). While some experiments
are required to construct performance optimization and prediction
models, in the case of highly repetitive short-running applications,
it is important to optimize and predict their performance without
delays. To achieve this, an offline training approach is useful for two
reasons. First, since the workloads are short-running, optimization
and prediction models are constructed during the offline training
and ready for usage in each run without delays. Second, since the
applications are highly repetitive, the cost of the offline training
can be amortized across many subsequent runs.

Contribution. Although the problem of cost optimization and per-
formance prediction via fully automated caching of appropriate
datasets and recommendation of cluster configurations is essen-
tial, we are not aware of any end-to-end approach that fully ad-
dresses it. By end-to-end here, we refer to a complete functional
solution available to end users, independent of any human inter-
action, and other external components. Recent work mostly focus
on contributions related to performance prediction [13, 59], cost
optimization [27, 56], caching of datasets [49, 62, 65], or cluster con-
figuration [31, 32, 38, 39, 48]. Combining and advancing all these
techniques in a unified approach remains an open challenge.

The scope of this paper are iterative data-intensive applications,
which are run repetitively on cloud platforms [1, 3, 4] with various
application parameters (e.g., code-de [57]) in a black-box man-
ner through a pay-as-you-go pricing model [22]. The main goal is
to efficiently run these applications with minimal execution cost
(area C) by selecting appropriate datasets to cache in memory and
recommending suitable cluster configurations for caching them.

In this paper, we present Juggler, an autonomous training-based
framework, which selects appropriate datasets for caching and rec-
ommends optimal cluster configuration to cache the datasets. Jug-
gler makes recommendations to end users based on performance
prediction and performance-cost trade-off. It achieves these via four
stages in order, each of which addresses a particular sub-problem.
Below, we formulate the sub-problems as questions:

(1) Considering computation time, size and number of compu-
tations of each dataset, which datasets should be cached?

(2) Considering different application parameters selected by end
users, what is their impact on the size of each cached dataset?
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Figure 3: Spark memory layout. M indicates Spark unified

memory, and R indicates storage memory for caching.

(3) Considering the variation in memory footprint of different
applications, what is the optimal cluster configuration (area

C) for caching the datasets without eviction?

(4) Considering a selection of optimal cluster configuration,
what is the estimated execution time and cost?

We evaluate Juggler using five real-world machine learning appli-
cations. Juggler selects suitable datasets to cache, which reduces ex-
ecution time and cost, on average, to 25.1 % and 58.1 % respectively,
compared to developer-cached datasets in our baseline (HiBench).
In 50% of cases, Juggler recommends an optimal cluster config-
uration, while the remaining cases are near-to-optimal. Juggler
achieves an average performance prediction accuracy of 90 %.

2 BACKGROUND

We discuss the execution model and memory management of Spark,
a distributed in-memory processing framework use case.

2.1 Execution model

Spark runs applications on a set of executor processes that execute
various operations, in parallel, on a collection of partitioned data
called Resilient Distributed Dataset or RDD. RDD is the primary
abstraction for distributed data processing in Spark [67]. Although
RDDs are immutable, a class of operations called transformations

(e.g., map, filter) create new RDDs from existing ones. Another class
of operations called actions (e.g., collect, count) return a value to a
central process (driver) after running a computation over RDDs.

An execution in Spark begins with the creation of a logical plan
for the set of transformation and action operators in the application.
The application level is the highest level of computation and con-
sists of one or more sequential jobs. Each action triggers the launch
of a job. Thus, a job comprises of a single action and a sequence of
the transformations preceding it, represented by a DAG of trans-
formations. When a transformation is applied on a (parent) RDD, a
new (child) RDD is created. The logical plan entails the parent-child
dependency between RDDs, by way of a lineage or DAG. Each child
RDD in the DAG points back to its parent, representing how Spark
will run the transformation. It should be noted that the direction of
edges between RDDs, which denotes the RDD dependency in the
logical plan, is opposite that of the dataflow graph.

The DAG of transformations is constructed starting from an
action. Then, parent RDDs are constructed in a backward fash-
ion towards the root RDDs that either depend on no other RDDs
or reference cached data. A transformation can be either narrow
or wide. Spark stages are created by splitting the DAG at shuffle
boundaries (wide transformation), whereby the scheduler pipelines
each group of narrow transformations (e.g., map, filter) into a stage.
Data shuffling between any two consecutive stages consists of two
phases, namely, Shuffle Write (last part of the first stage) and Shuffle

Read (first part of the second stage). Thus, a job consists of one or
more stages, and each stage comprises tasks that perform the same

Figure 4: Merging DAGs: Logistic Regression use case.

computation on different data partitions. More details about Spark’s
execution model have been presented previously [24, 41, 47, 60, 69].

2.2 Memory management

In Spark, memory is split into regions as depicted in Figure 3. In this
paper, we focus on the execution and the storage memory regions,
respectively used for computation and caching datasets [70]. Both
regions share the samememory space as though they were a unified
region M such that when execution memory is not used, it can be
utilized for caching, and vice versa. There is a minimum storage
space R below which cached data may not be evicted. In other
words, in each executor, at least R and at most M can be utilized
to cache datasets. The sizes of M and R are configurable [7]. When
the limit of memory is reached, partitions of least recently used
cached RDDs are evicted. This occurs when the size of cached
partitions either exceeds R while the execution memory is utilized
or exceeds M. A developer can unpersist a cached RDD when it is
not needed anymore. The memory space can then be utilized to
cache other useful RDDs that would have otherwise been evicted.
For the remainder of the paper, we refer to RDDs simply as datasets.

In the experiments depicted in Figure 2, each machine has 12GB
of RAM. In this case, M = (12GB - 300MB) × 60 % = 7.02GB and R
=M × 50% = 3.51GB. In svm, for example, 20.2% of M is utilized
for execution and the remaining 79.8% (i.e., 5.6GB per machine)
can be utilized for caching (cf. § 5.3 for details).

3 DATASET METRICS

We discuss the derivation of dataset metrics, namely the number of
times a dataset is computed, its size and its computation time.

3.1 Number of computations

An application consists of one or more sequential jobs, each of
which has its DAG of transformations. As DAGs may have many
transformations in common, we merge all the DAGs to represent
an application in a single DAG of operators. The number of times
to compute a dataset is equal to the number of its leaves in the
resulting DAG. For example, after merging all the DAGs in the
Logistic Regression (lor) application (cf. Figure 4), the number of
times to compute datasets d1 and d2 are 8 and 6, respectively. For
the remainder of the paper, we refer to datasets computed more
than once as intermediate datasets. The computation of the datasets
can be traced in a depth-first traversal order starting from d0.

3.2 Size

The size of a dataset equals the sum of the sizes of all its partitions.
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Figure 5: The DAG of transformations in the iterative job

of Logistic Regression application. The job consists of two

stages, each with several tasks running on two cores.

3.3 Computation time

In the following, we introduce a novel operator-level execution time
model to calculate the dataset computation time. The execution
time 𝐸𝑇job of a job is calculated as:

𝐸𝑇job =

𝑛∑︁
𝑖=1

𝐸𝑇T𝑖 (1)

where 𝑛 is the number of transformations in the job DAG and 𝐸𝑇T𝑖
is the execution time of the 𝑖th transformation. Figure 5 depicts the
DAG of transformations in an iterative job of Logistic Regression
(job #4 in Figure 4). The job execution time equals 𝐸𝑇T0 + ..+𝐸𝑇T2 +
𝐸𝑇T11 + .. + 𝐸𝑇T15 . If the DAG contains joins, some transformations
run in parallel. In this case, 𝑛 is the number of transformations
on the path in the DAG having the longest execution time. As
mentioned earlier, a job DAG consists of narrow transformations
(e.g., 𝑇1) and wide transformations (e.g., 𝑇12).
Narrow transformations. To calculate the execution time 𝐸𝑁𝑇𝑖 𝑗
of a narrow transformation 𝑖 in task 𝑗 , we distinguish three cases:

(1) If the transformation is the first in the task, the execution
time is the difference between the transformation’s finish
timestamp and the task’s start timestamp. In Figure 5, the
execution time of 𝑇0 in the second task 𝐸𝑁𝑇02 is 4.

(2) If the transformation is the last in the task, the execution
time is the difference between the task’s finish timestamp
and the transformation’s start timestamp. In Figure 5, the
execution time of 𝑇15 in the sixth task 𝐸𝑁𝑇(15)6 is 8.

(3) If the transformation is between two narrow transformations,
the execution time is the difference between the respective
transformation’s finish and start timestamps. In Figure 5, the
execution time of 𝑇1 in the fourth task 𝐸𝑁𝑇14 is 3.

Therefore, the execution time of a narrow transformation (cf. Equa-
tion 1) is calculated as:

𝐸𝑇T𝑖 =

𝑁tasks∑︁
𝑗=1

𝐸𝑁𝑇𝑖 𝑗

𝑁tasks
× 𝑁waves (2)

where 𝑁tasks is the total number of tasks in the stage, 𝑖 is the index
of the transformation in the DAG and 𝑁waves is the average num-
ber of tasks in a stage that run sequentially in the same core (i.e.,
⌈ #𝑡𝑎𝑠𝑘𝑠#𝑐𝑜𝑟𝑒𝑠 ⌉). The division over 𝑁tasks is for averaging, to handle vari-
ance between skewed tasks (e.g., Task #3 and Task #4 in Figure 5).
In Figure 5, the execution time of 𝑇1 is:

𝐸𝑇T1 = ((𝐸𝑁𝑇11 + 𝐸𝑁𝑇12 + 𝐸𝑁𝑇13 + 𝐸𝑁𝑇14)/4) × 2

Wide transformations. In data shuffling between two consecutive
stages, Shuffle Write takes place in the first stage and Shuffle Read
takes place in the second stage. Therefore, we consider a wide
transformation as a pair of two consecutive narrow transformations
and, thus, the execution time 𝐸𝑇T𝑖 of a wide transformation 𝑖 is:

𝐸𝑇T𝑖 = 𝐸𝑇T𝑖 .1 + 𝐸𝑇T𝑖 .2 (3)
where 𝐸𝑇T𝑖 .1 and 𝐸𝑇T𝑖 .2 are the execution times of ShuffleWrite and
Shuffle Read narrow transformations respectively. As Shuffle Write
(e.g., 𝑇12.1) is the last transformation in the stage (like 𝑇15), we con-
sider it as the second of the three cases of narrow transformations.
Similarly, since Shuffle Read (e.g., 𝑇12.2) is the first transformation
in the task (like 𝑇0), we consider it as the first of the three cases of
narrow transformations. In Figure 5, the execution time of 𝑇12 is:

𝐸𝑇T12 = 𝐸𝑇T12.1 + 𝐸𝑇T12.2

𝐸𝑇T12.1 = ((𝐸𝑁𝑇(12.1)1 + . . . + 𝐸𝑁𝑇(12.1)4)/4) × 2
𝐸𝑇T12.2 = ((𝐸𝑁𝑇(12.2)5 + 𝐸𝑁𝑇(12.2)6)/2) × 1

Discussion. To calculate the metrics of each dataset, especially the
size (cf. § 3.2) and the computation time (cf. § 3.3), it is necessary to
obtain low-level runtime data. Some data processing engines such
as Spark provide some of the required runtime data like the start and
end timestamps of each task [5]. However, other runtime data are
missing (e.g., the start and end timestamps of each transformation in
a task, the size of each dataset partition). Therefore, in our use case,
we modify Spark by adding custom instrumentations that collect
the missing runtime data. We explain this in the next section.

4 INSTRUMENTATION

A task in Spark processes a dedicated data partition by applying a se-
quence of narrow transformations. For each narrow transformation
in a task, our goal is to precisely know how much processing time
it takes and the size of its resulting data partition. Because Spark by
default does not provide the respective runtime data, we update the
source code of Spark. This results into a modified version, Spark In-

strumentation (Spark𝑖 ), that automatically injects a special-purpose
transformation (mapPartitionsWithIndex [6]) between each consec-
utive pair of transformations. Each injected transformation profiles
timestamps and partition sizes, and produces an instrumentation

dataset that is a replica of the dataset produced by the preceding
transformation. In each task, the profiling transformation stores
the runtime data in TaskContext and when the task finishes, its
corresponding low-level runtime data is sent to a central profiling
database. Finally, when the application ends, the (application, job,
stage and task) runtime data is copied to the database.

Figure 6 illustrates how profiling transformations are added
automatically. Each dataset (e.g., d0) is followed by an automatically
injected profiling transformation during its construction, which
generates an instrumentation dataset (e.g., d𝑖0 ) that is a copy of the
dataset. A transformation on d0 (e.g., filter) produces a new dataset
d1. Before creating a parent-child dependency fromd1 to d0, a check
is performed whether an instrumentation dataset is associated with
d0. If so, a dependency is created from d1 to the instrumentation
dataset, d𝑖0 . Otherwise, a dependency is created from d1 to d0. The
process continues up to the creation of the last dataset. Figure 7
shows task internals of the first stage of the iterative job in Logistic

Regression proceeding from instrumentations.
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Figure 6: Spark𝑖 steps in adding profiling transformations

(P). T1 indicates regular transformations.

Figure 7: Task internals in the first stage of the iterative job

in Logistic Regression proceeding from instrumentations. P
indicates profiling transformation.

Note that adding lightweight instrumentations to Spark allows us
to get low-level runtime data from application binaries, without the
need to access the source code. This solution allows for obtaining
metrics of all datasets, including those that are not accessible from
an application layer (e.g., RDDs in Spark MLlib).

5 JUGGLER

In this section, we describe Juggler (cf. Figure 8), an autonomous
framework that optimizes and predicts the execution time and
cost of big data applications. Firstly, Juggler optimizes the exe-
cution cost by selecting appropriate datasets for caching in an
application and recommending the optimal cluster configuration
for caching them. Juggler presents the combination of datasets to
cache in form of one or more schedules. A schedule is an ordered
list of datasets to be cached. Juggler achieves this by conducting
an offline training in three sequential stages: (1) Hotspot Detection:
Identifying datasets with the potential to improve performance
when cached, (2) Parameter Calibration: Building models to predict
the sizes of those potential datasets with respect to user-defined
application parameters, and (3) Memory Calibration: Deriving a
calibration factor for predicting exactly how many machines are
required to cache the datasets. Secondly, Juggler predicts the execu-
tion time by conducting a fourth offline training stage - (4) Building
execution time model(s): Constructing execution time models with
which to predict the execution time and, ultimately, cost.

5.1 Hotspot detection

This stage identifies hotspots, i.e., appropriate intermediate datasets
for caching, based on their computation time, size, and the number
of times they are computed. Juggler conducts a single sample run
of the application on Spark𝑖 to collect these metrics for each dataset
(d). It keeps the training overhead to a minimum by running the
application on a small data sample and with few iterations.

The hotspots detection algorithm is shown in Algorithm 1. Jug-
gler begins by making a list of all intermediate datasets (Line 1). It
initializes an empty current schedule and an empty list of sched-
ules (Line 2). Then for each dataset in the dataset list, it calculates
the computational overhead saved by caching it (Line 4–9). We
term this the benefit of a dataset. As the computation of a dataset
triggers the computation of all its parent datasets, caching a dataset
that is computed 𝑛 times saves the time of recomputing it and each

Algorithm 1: Hotspot detection.
Input :Dependencies, computation time (𝐸𝑇 ), number

of computations (𝑛) and size of each dataset
Output :List of schedules

1 datasets←− list of all datasets with 𝑛 > 1;
2 schedules←− ∅; schedulecurr←− ∅;
3 while datasets ≠ ∅ do
4 foreach dataset d𝑖 in datasets do

5 benefitd𝑖 = (𝑛d𝑖 - 1) × 𝐸𝑇𝑇 𝑖
;

6 foreach parent dataset d𝑝 of d𝑖 do

7 if d𝑝 is in schedulecurr then

8 break;
9 benefitd𝑖 += (𝑛d𝑖 - 1) × 𝐸𝑇𝑇𝑝

;
10 BCRd𝑖 = benefitd𝑖 / sized𝑖 ;
11 dmax ←− dataset with highest BCR;
12 while dmax is a single child of any of the datasets in

schedulecurr do

13 dmax ←− dataset with next highest BCR;
14 schedulecurr += dmax;
15 datasets -= dmax;
16 Re-evaluation←− false;
17 if dprev is a child of dmax then

18 datasets += dprev;
19 schedulecurr -= dprev;
20 Re-evaluation = true;
21 foreach parent dataset d𝑝 of dmax do

22 if d𝑝 is in datasets then

23 𝑛p -= (𝑛dmax - 1);
24 else if d𝑝 is in schedulecurr then

25 before caching dmax, unpersist d𝑝 if it is not
computed for other child datasets anymore;

26 dprev←− dmax;
27 if Re-evaluation == true then

28 continue;
29 schedules += schedulecurr;
30 foreach schedules 𝑖 and 𝑗 in schedules do

31 if schedule𝑖 and schedule𝑖 have same cost then

32 discard the schedule with lower benefit;
33 return schedules

of its parents (if any) 𝑛 − 1 times. Hence, for a dataset with ID 𝑖 (d𝑖 ),
its benefit, B𝑖 , is:

B𝑖 = (n𝑖 − 1) × (𝐸𝑇T𝑖 +
𝑃∑︁
𝑗

𝐸𝑇T𝑗
) (4)

where 𝑛𝑖 is the number of times the dataset is computed, 𝐸𝑇T𝑖 is
its computation time (§ 3.3) and 𝑃 is the list of its parent datasets.
Note that a dataset d𝑖 is computed by transformation T𝑖 .

Accompanying the benefit of caching a dataset is the cost of
caching it, in terms of memory footprint. To account for this, we
introduce the benefit-cost ratio, BCR, which is the ratio of a dataset’s
benefit to its size. After calculating the bcr of each dataset in the
dataset list (Line 10), Juggler selects the dataset with the highest
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Figure 8: Overview of Juggler with illustrative example (Logistic Regression).
bcr (Line 11). A single-child dataset is not added to a schedule that
already contains its parent (like d0 and d1 highlighted in Figure 4).
Therefore, if the selected dataset is a single-child of any dataset
currently in the schedule, it is not added to the schedule. Instead,
Juggler selects the dataset with the next highest bcr (Line 12–13).

After that, Juggler removes the dataset with the highest bcr
from the dataset list and adds it to the current schedule (Line
14–15). Then it checks if there is a need for re-evaluation: whether
the last dataset in the schedule is a child of the dataset with the
highest bcr. If so, Juggler performs a re-evaluation by removing
the last dataset from the schedule and adding it back to the dataset
list (Line 16–20).

When a dataset is cached, the benefit of each of its parents
decreases because caching it decreases the number of computations
of each of its parents. As for its children, caching the dataset also
decreases their benefits even though their number of computations
does not change. The reason is that caching them afterwards does
not save computations of the dataset (and its parents) anymore since
it was already cached (Line 7–8). Therefore, upon adding a dataset
to a schedule, Juggler updates the number of computations of
each of its parents in the dataset list (Line 21–23). Then it adds the
completed schedule to the list of schedules (Line 29).

Juggler performs this process iteratively until the dataset list
becomes empty. Juggler generates schedules incrementally. As
a result, the first schedule has the lowest benefit and requires
the least memory budget. By caching more datasets in subsequent
schedules, both the benefit and memory budget increase.

A strategy to optimize the memory budget of schedules with
more than one dataset is to unpersist a cached dataset directly be-
fore caching the succeeding dataset in the schedule (Line 24–25).
However, a cached dataset is unpersisted only if the dataset that
follows it in the schedule is its child in all remaining jobs (i.e.,
along the lineage graph of all DAGs). For two consecutive datasets,
unpersisting the first dataset decreases the schedule memory bud-
get by the size of the smaller of the two datasets. Note that as a

result of unpersisting, some schedules may end up having equal
cost. In such cases, Juggler keeps the schedule with the highest
caching benefits and discards the others (Line 30–32).
Example.We use Logistic Regression (the merged DAG of Figure 4)
as an example to illustrate the workings of the hotspot detection.
In the tables below, execution time is in ms and cost (size) is in MB.

#Computations Execution time Benefit Cost bcr
d0 8 2700 18,900 76.351 247.54
d1 8 10 18,970 76.347 248.47
d2 6 14 13,620 45.961 296.34

d11 4 40 8,292 45.975 180.36
d0, d1, d2 and d11 are computed more than once. Caching d0, for
example, saves its recomputation 7×, which results in a benefit of
7×2,700 (18,900). The benefit of caching d11 is 3×(2,700+10+14+40).
Juggler calculates the bcr for each dataset and adds the dataset
with the highest bcr (i.e., d2) to the first schedule. Next, Juggler
generates the second schedule starting from the datasets in the
previous schedule. In this case therefore, the second schedule
starts with caching d2. After this, Juggler updates the number of
recomputations, benefits and bcr of the remaining datasets; and
then selects the dataset with the highest bcr.

#Calls Execution time Benefit Cost bcr
d0 3 2700 5,400 76.351 70.73
d1 3 10 5420 76.347 70.99

d11 4 40 120 45.975 2.61
After caching d2, the benefit of caching d11 reduces to 3×40 because
caching d11 will not save computation cost of d2 or any of its parents
anymore. Ultimately, d1 has the highest bcr. However, d2 cannot
be cached in the second schedule before d1 because d1 is a parent
of d2. Consequently, Juggler re-evaluates, starting with d1. After
caching d1, it updates the benefits and selects the dataset with the
highest BCR, i.e., d11, as shown below:

#Calls Execution time Benefit Cost bcr
d2 6 14 70 45.961 1.52
d11 4 40 162 45.975 3.52
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Therefore, the first schedule is caching only d2, whereas the sec-
ond schedule is caching d1, followed by d11. Similarly, Juggler
generates the third schedule by incrementing the datasets in the
second schedule. After applying the same procedure, d2 is added
to the third schedule. Now, there remains no dataset to be cached.
And that completes the schedules.

Note that Juggler does not unpersist d1 in the second schedule
after d11 is computed. This is due to the last job in Figure 4 where d1
is computed along another DAG that does not contain d11. Because
d11 is present as the child of d2 in all the remaining DAGs, Juggler
unpersists d2 in the third schedule just before caching d11. As a
result, the cost of the third schedule reduces from being the sum
of the sizes of d1, d2 and d11, to being the sum of the size of d1 and
the maximum size between d2 and d11.

This stage ends with Juggler having identified schedules as
shown in the table below. As the second and third schedules have
the same cost, Juggler only keeps the third schedule because it
gives more benefit by caching an additional dataset.

schedule ID Unpersist Cost
1 2 - 45.961
2 1, 11 - 122.322
3 1, 2, 11 2 122.322

Discussion. At this point, Juggler has answered the question:
Which datasets are most appropriate for caching? With regards to
the Logistic Regression application, if the third schedule is selected,
more datasets are cached in memory, which implies more machines
are required, and lower execution time is expected (compared with
the first schedule). Therein lies a trade-off. And since the users
are not aware of the details of caching, they need to be provided
with a measure in terms of application execution time and cost, to
be able to select a suitable schedule. To this end, Juggler builds
an execution time prediction model for each schedule (cf. § 5.4).
The goal of the next stage is to predict the sizes of datasets for any
user-selected application parameters in every schedule.

5.2 Parameter calibration

Machine learning applications broadly have two application pa-
rameters: examples (P1) and features (P2). Following the hotspot
detection stage, Juggler predicts the size of each dataset included
in the schedules based on the application parameters. For each
parameter, Juggler constructs an array of parameter values to be
used during the training phase. We consider 𝐸 = {𝑒0, ..., 𝑒𝑛} and
𝐹 = {𝑓0, ..., 𝑓𝑛} to be the training arrays for P1 and P2 respectively.
Then it carries out the training phase using Spark𝑖 by running a
full-factorial set of experiments, which includes all parameter com-
binations (𝑛𝑚 experiments, where m is the number of application
parameters). Finally, for each dataset in the identified schedules, it
trains a predefined list of linear models and selects the model with
the least error. In our running example with Logistic Regression,
Juggler constructs a size prediction model for d1, d2, and d11.

Our experiments have shown that a training array of size 𝑛 = 3
works for all cases. And because there are only two application
parameters, the training overhead caused by running a full-factorial
design of experiments is negligible.

Juggler applies cross validation to determine the error of each
model. It does this by keeping each point among the total training

experiments, in turn, as a test experiment and fitting the model
with the remaining 𝑛𝑚 − 1 experiments. All error instances are
averaged to get the model error. Juggler selects the model with the
least error and trains it using all 𝑛𝑚 training experiments. Among
multiple models evaluated by Juggler, our experiments on more
than 300 different datasets show that all datasets fit into one of the
following models, even though Juggler evaluates other models:

d𝑠𝑖𝑧𝑒 = 𝜃0 × 𝑒 × 𝑓

d𝑠𝑖𝑧𝑒 = 𝜃0 × 𝑒 + 𝜃1 × 𝑒 × 𝑓

d𝑠𝑖𝑧𝑒 = 𝜃0 × 𝑓 + 𝜃1 × 𝑒 × 𝑓

d𝑠𝑖𝑧𝑒 = 𝜃0 + 𝜃1 × 𝑒 + 𝜃2 × 𝑒 × 𝑓

where 𝑒 is the number of examples and 𝑓 is the number of features.
To train models, Juggler uses curve_fit solver [2] with enforced
positive bounds, which avoids negative coefficients. Lastly, Juggler
sums up the predicted sizes of all cached datasets to obtain the total
size of each respective schedule:

schedule𝑠𝑖𝑧𝑒 =

𝐶𝑎𝑐ℎ𝑒𝑑𝐷𝑠∑︁
d𝑠𝑖𝑧𝑒

where 𝐶𝑎𝑐ℎ𝑒𝑑𝐷𝑠 is the list of cached datasets in the schedule. In
case of unpersist,𝐶𝑎𝑐ℎ𝑒𝑑𝐷𝑠 does not include datasets with minimal
sizes. For example schedule1𝑠𝑖𝑧𝑒 = d2𝑠𝑖𝑧𝑒 and schedule3𝑠𝑖𝑧𝑒 =

d1𝑠𝑖𝑧𝑒+d11𝑠𝑖𝑧𝑒 . Although Juggler is not limited toML applications,
new models might be needed if new classes of parameters are
introduced, such as #vertices and #edges in graphs and #rows and
#columns in SQL applications, coupled with other considerations
like selectivity and cardinality estimation [11, 30, 34, 36, 46, 64].
Discussion. By the end of the parameter calibration stage, Juggler
has answered the question: Considering the impact of selected appli-
cation parameters, what is the size of each cached dataset? However,
since every application has its unique characteristics with regards
to execution memory usage (cf. § 2.2), Juggler cannot yet precisely
predict how many machines are needed. For instance, in a certain
scenario, Juggler recommends to avoid running an application
with less than 3machines (otherwise, M (cf. § 2.2) will not be enough,
leading to cache eviction) or more than 6 machines (otherwise, R
(cf. § 2.2) will be more than needed, resulting in over-allocation of
resources). To precisely predict how many machines are required to
cache all datasets in the recommended schedules, Juggler carries
out a single training run per application, for memory calibration.

5.3 Memory calibration

In this stage, Juggler picks the first schedule and chooses values
for P1 and P2 such that the size of the schedule equals the maxi-
mum heapmemory fraction that can be occupied by the cached data
(M in § 2.2). To apply the schedule, the application is run with the
selected values for P1 and P2 on the execution engine of Juggler
(Juggler engine in short), which is a modified version of Spark that
overwrites the developer-cached datasets with the recommended
schedule by injecting cache/unpersist instructions to the DAG. Hy-
pothetically, if all partitions of cached datasets remain in memory,
then the application does not utilize the execution memory at all.
If 50 % of partitions are fetched from memory, the application fully
utilizes the execution memory. Thus, Juggler derives the memory

factor (from 0.5 to 1) as a ratio between the number of non-evicted
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partitions to the total number of partitions and predicts the actual
amount of memory for caching per machine as:

𝑀𝑒𝑚𝑜𝑟𝑦𝐹𝑜𝑟𝐶𝑎𝑐ℎ𝑖𝑛𝑔𝑃𝑒𝑟𝑀𝑎𝑐ℎ𝑖𝑛𝑒 = 𝑀 ×𝑚𝑒𝑚𝑜𝑟𝑦 𝑓 𝑎𝑐𝑡𝑜𝑟 (5)
where M is the unified memory region (cf. Figure 3). Juggler then
predicts the optimal cluster configuration for each schedule as:

#𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 =

⌈ schedule𝑠𝑖𝑧𝑒
𝑀𝑒𝑚𝑜𝑟𝑦𝐹𝑜𝑟𝐶𝑎𝑐ℎ𝑖𝑛𝑔𝑃𝑒𝑟𝑀𝑎𝑐ℎ𝑖𝑛𝑒

⌉
(6)

Discussion. As the last optimization stage, Juggler has answered
the question:What is the optimal cluster configuration for caching

datasets without eviction? The previous stages are conducted once
per application and the extracted schedules and models can be
re-used on any cluster environment (different types of machines)
without any changes. In each cluster environment, Juggler recom-
mends the optimal number of machines instantly without carrying
out any additional experiments. Despite variances in computing
power and network capacity across different types of machines,
for cost optimization, Juggler considers only the memory size per
machine. That way, M is calculated (cf. § 2.2) and used to calcu-
late𝑀𝑒𝑚𝑜𝑟𝑦𝐹𝑜𝑟𝐶𝑎𝑐ℎ𝑖𝑛𝑔𝑃𝑒𝑟𝑀𝑎𝑐ℎ𝑖𝑛𝑒 (cf. Equation 5) and the recom-
mended number of machines (cf. Equation 6).

The overhead caused by the optimization stages is negligible
(cf. § 7.6) because all the experiments in these stages are conducted
(1) only once per application (2) on a single machine (3) using tiny
datasets and (4) their extracted models are re-usable. We refer to
the constructed models of these stages as optimization models.

5.4 Building execution time model(s)

The goal of this stage is to predict the execution time for each
schedule with respect to the selected application parameters P1
and P2. Similar to the training experiments carried out during the
parameter calibration (§ 5.2), Juggler performs full-factorial train-
ing experiments of 𝐸 and 𝐹 for each schedule using Juggler engine.
For each experiment, the application is run on the recommended
number of machines, as derived in the memory calibration stage.
Juggler fits the execution times to a set of predefined linear mod-
els and obtains the coefficients of the model with the least error –
similar to the model fitting, cross-validation and model selection
in the parameter calibration stage. The result of this stage is an
execution time prediction model expressed in terms of P1 and P2.

Our experiments show that the execution time of all schedules
fit into one of the following models, even though Juggler evaluates
other models:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝜃0 × 𝑒 × 𝑓

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝜃0 + 𝜃1 × 𝑒 × 𝑓

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝜃0 × 𝑓 + 𝜃1 × 𝑒 × 𝑓

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝜃0 × 𝑓 2 + 𝜃1 × 𝑒 × 𝑓

where 𝑒 and 𝑓 are the number of examples and features, respectively.
Discussion.With this stage, Juggler has answered the question:
What is the estimated time and cost of running the application in
an optimal cluster configuration? The execution time model of
each schedule takes P1 and P2 as parameters. In other words,
the execution time models (namely prediction models) are used to
correlate application parameters with execution time. The number
of machines is not included in this model because the model aims

to predict the execution time if the optimal number of machines for
the schedule is selected. The type of machines is also not included.
Therefore, unlike optimization models, prediction models cannot
be re-used as is on different clusters. Additional models would be
required on top of them (cf. § 6) or, in the worst case, this stage is
re-conducted if the cluster environment changes.

Even though the offline training is conducted in the previous
four sequential stages, it is important to highlight that Juggler is
a modular framework whose stages/components are independent
such that if an error takes place in a stage, it would not be amplified
in the following stages. For example, if the hotspot detector selected
an inappropriate dataset (i.e., inappropriate schedule), Juggler
would predict its size, recommend suitable cluster configuration to
cache it, and predict the execution time of the schedule.

5.5 Actual usage

Figure 8 depicts the end-to-end process, where an end user runs an
application. Initially, the end user selects application parameters
(examples and features). Based on these parameters, the size esti-
mator predicts the size of cached datasets in each schedule using
the dataset size models extracted in the parameter calibration stage
(§ 5.2). Afterwards, the cluster configuration selector recommends
the number of machines required for caching each schedule based
on the cumulative size of its respective datasets as predicted by the
size estimator, and the respective memory factor extracted in the
memory calibration stage (§ 5.3). Next, the execution time predictor

predicts the execution time for each schedule using the extracted
execution time models (§ 5.4) with respect to the selected applica-
tion parameters. After that, the execution cost estimator predicts
the execution cost of each schedule from its respective recom-
mended cluster configuration and predicted execution time. The
cost is currently expressed as #𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 ×𝑇𝑖𝑚𝑒 . But this can be
replaced with other pricing models [45]. Then the execution time

predictor and the execution cost estimator return the execution time
and cost of each schedule respectively to the end user. All these
values are calculated at once without additional experiments since
all models are already available from the offline training. Finally,
the end user (or scheduler) selects a suitable schedule that meets
predefined constraints such as time deadline and cost budget. How-
ever, Juggler does not offer a schedule if another one is faster and
cheaper.

6 DISCUSSION

In this section, we discuss changes in environment where rebuilding
the execution time models can be avoided. The optimization models
can always be reused independently of the changes.

6.1 Number of iterations

Iterative applications take the number of iterations as a parameter.
Optimization. Selecting datasets for caching and recommend-

ing suitable cluster configuration to cache them are independent of
the number of iterations because it does not influence the size of
the cached datasets. Therefore, Juggler optimizes the cost of an
application run independently of the number of iterations.

Prediction. Our experiments demonstrate that the number of
iterations influences Juggler’s prediction models (cf. § 5.4). To add
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this parameter to the execution time model, another (linear) exe-
cution time model can be extracted from the main execution time
model by carrying out additional experiments. However, in many
cases, the number of iterations is not known beforehand. In such
cases, the application runs until either a predefined condition is met
or the maximum number of iterations is reached. Consequently, pre-
dicting the number of iterations is challenging since it is influenced
by various application-level aspects, such as dataset characteristics
and application semantics (convergence function). This issue is
already addressed by [50]. Moreover, some hyper-parameters, like
the number of clusters in k-means, influence the number of itera-
tions and the execution time of each iteration [11]. Similar to the
number of iterations, these hyper-parameters are to be considered
when Juggler builds the execution time model (cf. § 5.4).

6.2 Types of machines (VMs)

Public cloud providers offer various types of instances (Azure and
AWS provide 146 and 133 different instance types respectively [38]).

Optimization. Selecting datasets for caching and predicting
their sizes are not influenced by the hostingmachine. Rather, it is the
cluster configuration that depends on the size of allocated memory
per machine (Equations 5 and 6), which is known in advance. Thus,
Juggler does not need additional experiments to recommend the
cluster configuration in different environments. In our evaluation
(§ 7.1), Juggler constructs optimization models in one environment
and recommends the cluster configuration for another one.

Prediction. The execution time of a schedule varies between
different types of machines [59]. To avoid conducting similar ex-
periments (§ 5.4) on all types of machines, additional experiments
on a few of them are required to build a new execution time model
on top of that of Juggler. CherryPick [13] builds such a model
by predicting the execution time of application runs on many in-
stance families without carrying out experiments in all of them. It
achieves this by defining a set of features for machine types (e.g.,
CPU count and speed, the size of memory, network bandwidth,
etc.) and leveraging Bayesian Optimization [43] using an adaptive
search methodology to reduce the number of experiments.

6.3 Multi-Tenancy

In multi-tenant environments, where multiple applications are exe-
cuted concurrently on the same machines, the utilization of shared
resources varies over time.

Optimization. Applications are deployed in isolated virtual ma-
chines and the allocated memory for a virtual machine is not shared
with others. This is because cluster managers (e.g., YARN [58]) will
not offer an occupied memory region as a resource for a newly sub-
mitted application. Consequently, the unified memory (M in § 2.2)
is not shared among multiple concurrent applications. Therefore,
the cluster configuration recommended by Juggler is not affected
by concurrent application runs hosted on the same machines.

Prediction. Ernest [59] realizes a very small execution time vari-
ance (less than 2% of mean standard deviation) between repeated
identical runs (same application, same data, and same configuration)
for a 24-hour time frame on a multi-tenant public cloud (Amazon
EC2). Contrarily, with more extensive experiments, others realize
a considerable variance between identical runs [13, 29, 53, 63]. To

adapt Juggler in such dynamic clouds, monitoring and model-
ing the non-deterministic behaviour of such multi-tenant clouds
are required whether by measuring the noise caused by concur-
rently running applications during the experimental phase [13],
predicting the performance variance in an online-training phase
[63], performing online dynamic reprovisioning [29] or applying
rule-based noise prediction techniques [61, 63].

7 EVALUATION

As there is no other end-to-end framework that addresses the same
problem of configuration-based recommendation with fully auto-
mated caching of datasets, we compare Juggler with our baseline
HiBench to see how much performance improvement Juggler
brings. However, some stages/components of Juggler are similar
to components of other state-of-the-art frameworks [9, 17, 23, 28,
33, 44, 59, 62, 65] that address different use cases such as cache
eviction policies, resource-constrained clusters, materialized views
and selection of shared sub-expressions. As we will show later, we
enforce appropriate assumptions that ensure a fair comparison. It is
thus important to state that the aim of these comparisons is not to
show that the stages/components of Juggler outperform or replace
the corresponding state of the art components, but rather to give
empirical grounds for not using them in Juggler.

7.1 Workloads and experimental setups

We select five real-world iterative machine learning applications
(cf. Table 1) from HiBench.

For the offline training of each application, Juggler runs a single
experiment for hotspot detection (cf. § 5.1) and 9 experiments with
randomly selected examples and features for parameter calibration
(cf. § 5.2) on Spark𝑖 . Next, Juggler conducts a single experiment
for memory calibration (cf. § 5.3) on Juggler engine. In these three
stages, Juggler creates schedules for an application and predicts
the required number of machines for each schedule with respect
to selected application parameters. For conducting these stages and
measuring the effect of cluster setup on the accuracy of models
extracted therein, we use a single node equipped with Intel Core i3-
2370M CPU running at 4x 2.40GHz, 3.8 GB RAM, and 388 GB disk.
To construct execution time models (cf. § 5.4) for all schedules,
Juggler carries out 9 experiments per schedule on Juggler engine.

For the actual runs (cf. § 5.5), we run the application with each
schedule on Juggler engine. Even though Juggler selects a single
configuration for each schedule, we run every schedule on 12
different configurations (1–12 machines) to validate whether Jug-
gler recommends (near-to) optimal cluster configuration or not.
Details of the actual runs of all evaluated applications are depicted
in Figure 9. Throughout the evaluation, costs of runs are expressed
in machine minutes (#machines × time).

We construct the execution time models (cf. § 5.4) and conduct
the actual runs (cf. § 5.5) on our 12-node private Spark cluster. Each
node is equipped with an Intel Core i5 CPU running at 4x 2.90 GHz,
16 GB RAM, 1 TB disk, and 1 GBit/s LAN. All nodes (including
the previously mentioned single node) run Hadoop MapReduce 2.7,
Spark 2.4.0, Java 8u102, Apache YARN, and HDFS.
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Table 1: Details of evaluated applications.

Application Examples Features Iterations Input data Datasets Intermediate datasets schedules

Linear Regression (lir) 40k 120k 10 35.8 GB 111 16 2
Logistic Regression (lor) 70k 50k 50 26.1 GB 210 4 2

Principal Components Analysis (pca) 6k 5k 100 229.2 MB 1833 5 1
Random Forest Classifier (rfc) 100k 40k 3 29.8 GB 26 8 3
Support Vector Machine (svm) 40k 80k 100 23.8 GB 524 9 2
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Figure 9: Actual runs with Juggler and HiBench schedules. Juggler’s recommended configuration is indicated by a □ .

Table 2: Juggler’s schedules & default schedules.

Application ID schedule
lir 1 p(1)
lir 2 p(1) p(3)
lir HiBench -
lor 1 p(2)
lor 3 p(1) p(2) u(2) p(11)
lor HiBench p(2) p(11)
pca 3 p(1) u(1) p(2) u(2) p(13)
pca HiBench p(2)
rfc 1 p(11)
rfc 2 p(1) p(12)
rfc 3 p(1) p(5) u(5) p(12)
rfc HiBench p(12)
svm 1 p(2)
svm 2 p(1) p(6)
svm HiBench p(2)

7.2 Dataset selection

Table 2 presents a summary of default schedules (i.e., developer-
cached datasets in HiBench) alongside the corresponding sched-
ules selected by Juggler (cf. § 5.1). 𝑝 (𝑖) and𝑢 (𝑖) respectively denote
persisting and unpersisting dataset d𝑖 . Through the framework-
based instrumentation, Juggler caches framework-defined datasets
(i.e., RDDs in Spark MLlib; cf. bold numbers in Table 2), which are
not accessible by the application layer.
Juggler vs baseline. We evaluate Juggler’s selected schedules
by comparing each of them with the default one (cf. Figure 9). To
appropriately compare Juggler’s schedules with the default ones,
but independently from cluster configuration, we select the exe-
cution cost of each schedule on optimal cluster configuration for
each case. We achieve this by running each schedule on all cluster
configurations and selecting the minimal execution cost. Our ex-
periments demonstrate a substantial reduction of execution cost
for most applications. In lir, lor, pca and rfc, the minimal cost of
every schedule generated by Juggler is lower than the minimal
cost of the one presented by the default schedule. However, svm
is an exception. We can observe that the default schedule caches
the same datasets selected by Juggler in schedule #1 (cf. Table 2).
Even though Juggler selects schedule #2 as a solution despite

its higher execution costs, Juggler nevertheless gives the option
of running the application with lower execution time. As for pca,
all cached datasets fit into the memory of a single machine be-
cause their size is tiny. This explains the increasing cost whenever
the number of machines exceeds one. Here, changing the cached
datasets significantly reduces the time and cost of running pca in
all cluster configurations (41.7% lower cost in the optimal cluster
configuration). It is important to highlight that selection of suit-
able datasets to cache must go hand in hand with the selection of
appropriate cluster configuration. For example, running lir with
schedule #2 on one machine leads to poor performance that costs
more than the default schedule (cf. Figure 9a). However, running it
on optimal cluster configuration (12 machines) reduces the cost to
24.6 %. For all applications, Juggler, on average, reduces execution
time to 25.1 % and cost to 58.1 %, compared with HiBench.
Related components.We compare the hotspot detection with the
following related components:
–Cache eviction policies. LRC [65, 66] and MRD [49] are DAG-aware
cache eviction policies in Spark that rank cached datasets based
on their reference count and reference distance, respectively, but
without considering their size and computation time. They present
cost models to rank datasets in order to select which to keep in case
of cache limitation. We consider them as dataset selection policies
rather than cache eviction policies. In addition, we assume that
we have an unlimited amount of memory and thus all datasets are
cached. After we apply their approaches, we select the first sched-
ule, whose dataset has the highest rank. For the second schedule,
we update the reference count with respect to the selected dataset
in the first one, and successively select the highest-ranked dataset.
Similarly, this procedure applies to consecutive schedules.
–Recycling intermediate results. Hagedorn et al. [23] propose a cost
model to calculate the benefits of materializing common datasets be-
tween various Spark workloads in HDFS. Assuming that the capac-
ity of HDFS is sufficient to materialize huge datasets, the presented
cost model relies only on the computation time of datasets and the
number of times they are computed, but does not take the size of
datasets into account. Nagel et al. [44] present another cost model
that calculates the benefit of materializing intermediate results in
a limited cache. Similar to hotspot detection, its cost model takes
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Table 3: Extra cost and time of related components compared

to Juggler: Dataset selection.

[44] [28] [23] LRC MRD

Cost 29 % 32% 17% 32% 33%
Time 22% 30% 10% 37% 49%

into consideration the size of datasets, their computation time and
the number of times they are computed. However, unlike hotspot
detection, it neither re-evaluates nor unpersists stored datasets in
previous schedules. To produce schedules from these cost mod-
els, we assume the storage is limited to cache one dataset for the
first schedule, and then produce later schedules by incrementally
extending the cache size.
–Materializing common sub-expressions. Jindal et al. [28] present a
cost model that materializes the results of expressions common
between different workloads, considering a limited storage budget.
Their cost model relies on the utility of the sub-expression, which
is the amount of time that is saved across all workloads if this sub-
expression is materialized. To produce schedules, we apply the
same methodology as in the case of recycling intermediate results.
Juggler vs related components. Similar to the comparison be-
tween Juggler and HiBench, we select the optimal cluster configu-
ration for each schedule recommended by related components by
running it on all cluster configurations and selecting the one with
minimal execution cost. Figure 10 shows the cost of various sched-
ules. It can be observed that some related components recommend
more schedules than others. But Juggler is able to compare and
omit inefficient schedules. For example, Juggler recommends one
efficient schedule in pca that results in minimal execution cost
compared to all other schedules (cf. Figure 10c). In some cases,
Juggler and the related components recommend the same sched-
ules. Since [23] and [28] do not consider the size of datasets, both
of these approaches present schedules that recommend caching
large datasets, which require more machines to fit them in memory.
LRC andMRD have the same limitation, besides not considering the
computation time of datasets. This also leads to a sub-optimal se-
lection of datasets. [44] recommends efficient schedules when one
dataset is to be cached. However, caching additional datasets leads
to an inefficient combination of cached datasets. This is because
it does not re-evaluate previously cached datasets, when required,
upon caching new ones. As seen in Table 3, Juggler recommends
schedules with not only minimal execution cost but with mini-
mal execution time as well. For every application, Figure 11 shows
the average cost of the approaches. In all applications, Juggler
recommends schedules with minimal execution cost.

7.3 Performance prediction

We compare execution time prediction of Juggler with Ernest [59],
which relies on a sampling-based approach to provide accurate
predictions for long-running Spark workloads. To ensure low over-
head, it collects training data points by applying optimal experiment

design [51]. Ernest presents an execution time model which consid-
ers serial parts, parallel parts, and the overhead of a higher number
of machines, but without taking cache limitations into account.

As a reminder, to predict the execution time of a schedule,
Juggler does not use the operator-level execution time model
(cf. § 3.3) used in the hotspot detection. Rather, Juggler trains

the execution time models (cf. § 5.4) by carrying out 9 experiments
of each schedule with randomly selected application parameters
(examples and features). Each experiment is carried out using the
optimal cluster configuration, which Juggler predicts in advance
(§ 5.3). To train the execution time models using Ernest, we carry
out 7 experiments, as per its optimal experiment design [51], on
1–12 machines with tiny datasets (1 %–10%). For each schedule,
Figure 12 shows the execution time prediction accuracy of Juggler
and Ernest on the optimal cluster configuration. On average, the
accuracies of Juggler and Ernest are 90.6 % and 53.2 % respectively.

In Juggler’s case, the training experiments are not short-running.
In Ernest’s case, the experiments are short (mostly less than a
minute for each run) because they are carried out with tiny datasets
and thus influenced by relatively big noise due to uncertain internal
cluster dynamics and stragglers [13, 47]. This explains why Ernest’s
prediction is inaccurate in most of the cases.

7.4 Dataset size prediction

We compare the sizes of cached datasets in each schedule (cf. Ta-
ble 2) in actual runs (cf. Table 1) with the sizes that Juggler (cf. § 5.2)
predicts with respect to the #Examples and #Features in Table 1. Fig-
ure 13 shows that the predicted and actual sizes of cached datasets
are almost equal in all cases. In the worst case, the error of Juggler
is 0.91 %.

7.5 (Near-to) optimal cluster configuration

In the following, we evaluate Juggler’s recommendation of cluster
configuration by comparing it with related componentswith respect
to the optimal cluster configuration. Note that we obtain the optimal
cluster configuration by running the schedules on all possible
cluster configurations (1–12 machines) to get the configuration
with the minimal cost.
Juggler compared to optimal. For every schedule, we compare
the optimal cluster configuration with Juggler’s recommendation,
as shown in Figure 14. We see that Juggler selects an optimal
solution in 50 % of cases. In the remaining 50 % of cases, Juggler’s
recommendation is near-to optimal. The same observation is also
shown previously in Figure 9. On average, the error incurs an
additional execution cost of 7.3 %. It is important to highlight that in
some cases (especially in CPU-intensive applications), datasets are
tiny andmight fit into thememory of a singlemachine. In such cases,
Juggler recommends a single machine to run the application which
leads to the longest execution time but also minimal execution cost
(e.g., pca - see Figure 9c), which is acceptable since the goal of
Juggler is to minimize the execution cost.
Related components.We select the following related components
which share with Juggler the same goal of predicting the required
memory budget for Spark applications.
–MemTune [62] is a dynamic memory manager that predicts mem-
ory usage and dynamically tunes the memory fraction (execution-
caching ratio) in resource-constrained clusters. It prioritizes mem-
ory allocation for execution over caching to minimize GC overhead.
We apply its approach to tune the number of machines instead of
the memory fraction.
–RelM [33] introduces a safety factor to ensure error-free runs in
resource-constrained clusters. It also considers cache eviction ratio,
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Figure 10: Juggler vs related components: Dataset selection.
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of dataset selection.
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Figure 14: Juggler’s recommendation compared to optimal

cluster configuration.

task concurrency and low GC overhead. Similar to MemTune, we
apply its white-box cost model to tune the number of machines.
–SystemML [17] relies on worst-case memory estimates considering
fitting of all input, intermediate and output data in memory.
Juggler vs related components. We analyze the memory foot-
print and data sizes of actual runs with schedules recommended
by Juggler and select a cluster configuration that satisfies each
related component. For example, Juggler recommends to run Lo-

gistic Regression with schedule #1 on 3 machines, while SystemML
recommends 4 machines to fit input and output data in memory, in
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Figure 15: Juggler vs. related components: Recommended

cluster configuration.

Table 4: Cost and time ratio of related components compared

to Juggler: Recommended cluster configuration.

MemTune RelM SystemML

Cost 36 % 46% 9%
Time −9 % −46 % −18 %

addition to cached datasets. Figure 15 and Table 4 show that Juggler
recommends cluster configuration with minimal cost, compared to
the related components. MemTune, in some cases, selects cluster
configuration which leads to cache eviction, and in other cases,
over-allocates cluster configuration. To fit data input and output,
SystemML always over-allocates cluster configuration. RelM over-
allocates cluster configuration in accordance with its safety factor
and also to ensure low GC overhead. During our experiments, we re-
alize that RelM recommends more machines than all others. On the
one hand, this results in RelM having the highest cost (cf. Table 4).
On the other hand, RelM has the lowest execution time because
over-allocating machines still increases the degree of parallelism.
The same reason holds for SystemML, even though it recommends
less number of machines compared to RelM.
Variance in data partition sizes. From our experiments, we ob-
serve that the sizes of data partitions are usually not equal. For
example, in a single svm run with schedule #2, some partitions
are two times larger than others. Despite this variance, all data
partitions remain in memory during the run. The reason behind
this is that the execution time of tasks varies with varying data
sizes. TaskScheduler in Spark manages this execution time variance
between tasks by assigning tasks to machines that have free exe-
cution slots. There is thus an unequal distribution of tasks among
machines. But on the other hand, the total cached data partitions
in each machine is almost equal. In some iterations, we observe
that apart from data size, stragglers also introduce runtime vari-
ance between tasks, which causes cache eviction. However, in later
iterations, the evicted partitions fit in memory when they are recom-
puted on other machines. In the same svm example, 14 partitions
out of 362 are evicted in the first iteration, only 3 are evicted in
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Figure 16: Training cost of Juggler’s stages.

the second one, and all partitions remain in memory in the third
one. The execution cost, in this case, is near-to optimal. And this
explains why Juggler in 50 % of cases recommends near-to-optimal
instead of the optimal cluster configuration.

7.6 Training overhead and general gains

Figure 16 presents the percentage training costs of the individual
training stages in Juggler. For all applications, most of the overall
offline training cost comes from building the execution time model.

To evaluate the efficiency of Juggler, we compare, for each ap-
plication, the average execution cost of HiBench implementation
(Table 5: Line 1 refers to Figure 9: ) on all cluster configurations (i.e.,
the developer-cached datasets without recommendations of cluster
configuration) with the average execution cost using Juggler’s se-
lected schedules and recommended cluster configuration (Table 5:
Line 2 refers to Figure 9: , , ). From these two measurements,
we observe how much the cost savings per run is (Table 5: Line
3, 57.8% on average), and how many runs are required to start
achieving the benefits of using Juggler. Note that the cost savings
per run is achieved from the optimization models (cf. § 5.1, § 5.2
and § 5.3). On average, 4 actual runs are required to start gaining
optimization benefits. To build the execution time models for the
first time or re-build them, in the worst case, 43 actual runs are
required, on average, to start gaining prediction benefits. However,
as mentioned earlier, re-building them can be avoided (cf. § 6). As
shown in Table 5, for pca, we achieve the benefits of using Juggler
from a single actual run.While in rfc, more actual runs are required
to achieve the benefits of using Juggler. The reason behind this is
the large training overhead caused by building the execution time
models of three schedules. In addition, the rfc cost savings per
run (31 %) is lower than that of other applications due to the small
number of iterations per run (cf. Table 1). The purpose of choosing
this small number of iterations is to validate the efficiency of Jug-
gler in such cases. The required number of runs to start gaining
benefits of using Juggler (as shown in Table 5) is negligible since,
on a daily basis, the usage of these applications and their likes is
immense. In addition to the number of runs, the problem size (i.e.,
the input data size and the number of iterations) also plays a role
in evaluating the efficiency of Juggler. For example, by increasing
the input data size of svm to 40GB and the number of iterations to
200, the cost saving per run increases to 79% and, thus, 11 actual
runs are needed (instead of 26) to benefit from Juggler.

8 RELATEDWORK

Apart from our baselines (cf. § 7), we group the following related
work according to the topic they have addressed.
Dataset selection. The majority of contributions [16, 40, 54] that
propose solutions regarding selecting datasets to cache assume

Table 5: Juggler’s training cost efficiency and general gains.

lir lor pca rfc svm

Default cost (machine min) 73.8 102.7 193.2 47.1 24.2
Juggler cost (machine min) 16.4 52.7 18.9 32.5 14.4
Cost savings per run 78 % 49% 90% 31% 41%

Optimization
Training cost (machine min) 89.4 228.1 20.91 49.26 48.43
#Runs to start gain benefits 2 5 1 4 5

Prediction
Training cost (machine min) 147.8 1912.2 22.58 2185.2 202.19
#Runs to start gain benefits 3 39 1 151 21

Total
Training cost (machine min) 237.29 2140.3 43.5 2234.5 250.6
#Runs to start gain benefits 5 43 1 154 26

limited cache storage and, thus, consider it as a knapsack problem
and propose cache eviction schemes. These studies either assume
that the datasets are not interdependent and thus caching a dataset
has no bearing on the benefits of caching other datasets or are
limited to certain types of join operators or propose caching models
that reduce network traffic in geographically distributed networks.
Cluster configuration. Several studies address the issue of select-
ing appropriate cluster configuration in public clouds [13, 31, 32, 38,
39, 48]. These approaches rely on sample runs, whose overhead is
relatively high in case of short actual runs, and study applications
in a black-box manner without considering their internals (e.g.,
application parameters, caching of intermediate results, etc.).
Performance prediction. Several contributions [25, 50, 60, 61, 69]
present fine-grained approaches for execution time prediction of
big data applications that consider application internals (e.g., I/O
cost, shuffling, degree of parallelism, interference between con-
current tasks, etc.). In contrast, others [12, 21] present black-box
performance prediction methodologies relying on ML models with-
out diving into application internals. None of these contributions
considers the impact of cache limitation and application parameters
in their presented execution time models.
Cardinality estimation. Lastly, many studies focus on cardinality
estimation [30, 35, 36, 46, 64]. Catalyst optimizer [15] runs on top
of spark-sql for rule and cost-based optimization. However, all these
contributions focus on database operators with clear knowledge of
their internals, but without considering black-box operators.

9 CONCLUSION

Juggler is an autonomous optimization and prediction framework
that minimizes the execution time and cost of application runs.
It achieves this by selecting appropriate datasets for caching and
recommending optimal cluster configuration with accurate perfor-
mance prediction. Overall, the evaluation of Juggler shows very
good results, in comparison with its baseline and related work.
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