elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Consistent time-step optimization in the lattice Boltzmann method

Horstmann, Tobias und Touil, Hatem und Vienne, Lucien und Ricot, Denis und Lévêque, Emmanuel (2022) Consistent time-step optimization in the lattice Boltzmann method. Journal of Computational Physics. Elsevier. doi: 10.1016/j.jcp.2022.111224. ISSN 0021-9991.

[img] PDF - Nur DLR-intern zugänglich - Postprintversion (akzeptierte Manuskriptversion)
1MB

Kurzfassung

Owing to its efficiency and aptitude for a massive parallelization, the lattice Boltzmann method generally outperforms conventional solvers in terms of execution time in weakly-compressible flows. However, the authorized time-step (being inversely proportional to the speed of sound) becomes prohibitively small in the incompressible limit, so that the performance advantage over continuum-based solvers vanishes. A remedy to increase the time-step is provided by artificially tailoring the speed of sound throughout the simulation, so as to reach a fixed target Mach number much larger than the actual one. While achieving considerable speed-ups in certain flow configurations, such adaptive time-stepping comes with the flaw that the continuities of mass density and pressure cannot be fulfilled conjointly when the speed of sound is varied. Therefore, a trade-off is needed. By leaving the mass density unchanged, the conservation of mass is preserved but the pressure presents a discontinuity in the momentum equation. In contrast, a power-law rescaling of the mass density allows us to ensure the continuity of the pressure term in the momentum equation (per unit mass) but leaves the mass density locally discontinuous. This algorithm, which requires a rescaling operation of the mass density, will be called “adaptive time-stepping with correction” in the article. Interestingly, we found that this second trade-off is generally preferable. In the case of a thermal plume, whose movement is governed by the balance of buoyancy and drag forces, the correction of the mass density (to ensure the continuity of the pressure force) has a beneficial impact on the resolved velocity field. In a pulsatile channel flow (Womersley's flow) driven by an external body force, no difference was observed between the two versions of adaptive time-stepping. On the other hand, if the pulsatile flow is established by inlet and outlet pressure conditions, the results obtained with a continuous pressure force agree much better with the analytical solution. Finally, by using adaptive time-stepping in a channel entrance flow, it was shown that the correction is compulsory for the Poiseuille flow to develop. The expected compressibility error due to the discontinuity in the mass density remains small to negligible, and the convergence rate is not notably affected compared to a simulation with a constant time step.

elib-URL des Eintrags:https://elib.dlr.de/189503/
Dokumentart:Zeitschriftenbeitrag
Titel:Consistent time-step optimization in the lattice Boltzmann method
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Horstmann, Tobiastobias.horstmann (at) dlr.dehttps://orcid.org/0000-0001-6922-4756NICHT SPEZIFIZIERT
Touil, HatemNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vienne, LucienNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ricot, DenisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lévêque, EmmanuelNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 April 2022
Erschienen in:Journal of Computational Physics
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.jcp.2022.111224
Verlag:Elsevier
ISSN:0021-9991
Status:veröffentlicht
Stichwörter:Lattice Boltzmann method Adaptive time-stepping Time-step optimization
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Berlin-Charlottenburg
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerksakustik
Institut für Antriebstechnik > Numerische Methoden
Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge
Hinterlegt von: Horstmann, Tobias
Hinterlegt am:31 Okt 2022 08:39
Letzte Änderung:20 Okt 2023 07:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.