Strohmann, Tobias und Barriobero Vila, Pere und Gussone, Joachim und Melching, David und Stark, Andreas und Schell, Norbert und Requena, Guillermo (2022) Can unsupervised machine learning boost the analysis of my synchrotron diffraction data (on-site)? MSE 2022 Congress, 2022-09-27 - 2022-09-29, Darmstadt.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Time-resolved high energy synchrotron X-ray diffraction (HEXRD) experiments to study phase transformations can generate large amount of data owing the high acquisition rates which are possible nowadays. Moreover, the conventional data processing steps for revealing microstructure kinetics can be time consuming and represent a bottleneck in the research process. In our work, we explore the use of unsupervised machine learning to automatize the processing of HEXRD data. A machine learning algorithm is used to identify key features of analysis in HEXRD data sets. To this purpose, we trained an auto-encoder using five large data sets obtained during different in situ heat treatments of an additively manufactured Ti-6Al-4V alloy. The reconstruction error of the trained auto-encoder is correlated to the phase transformation kinetics. Furthermore, we show the evolution of the latent feature space of the auto-encoder during heat treatment and investigate its use for finding anomalies and characteristic features related to phase transformations in the diffraction data.
elib-URL des Eintrags: | https://elib.dlr.de/189500/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Can unsupervised machine learning boost the analysis of my synchrotron diffraction data (on-site)? | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 28 September 2022 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Synchrotron diffraction, unsupervised machine learning, neural networks | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | MSE 2022 Congress | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Darmstadt | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 27 September 2022 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 29 September 2022 | ||||||||||||||||||||||||||||||||
Veranstalter : | DGM e.V. | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Strohmann, Tobias | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 03 Nov 2022 08:51 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags